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Entropy of some integer valued stochastic processes

Aghababaei Jazi, M.
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Abstract

In this paper, we consider the entropy and entropy rate of some integer valued stochastic processes.
We illustrate and compare the entropy (rate) of thinned values of Poisson and geometric processes.
Also, we study the entropy (rate) of integer valued AR(1) process with Poisson innovations.

Keywords: Entropy, Integer valued stochastic processes, Markov chain.

1 Introduction

A stochastic process X1, X2, ... is an indexed sequence of random variables and is characterized by the
joint probability distribution function

Pr (X1 = x1, X2 = x2, · · · , Xn = xn) = (1)

=
n∏
k=1

Pr(Xk = xk|X1 = x1, · · · , Xk−1 = xk−1), n = 1, 2, ....

This process is said to be stationary if the joint probability distribution function (1) of any subset of the
sequence of random variables is invariant with respect to shifts in the time index, i.e.,

Pr(X1 = x1, · · · , Xn = xn) = Pr(X1+k = x1, · · · , Xn+k = xn),

for every shift k and for all x1, x2, ..., xn.
X1, X2, ... are said to be a Markov chain (process) if every random variable (r.v.) Xn depends on the
one preceding it (Xn−1) and is conditionally independent of all the other preceding random variables
X1, X2, ..., Xn−2, i.e., if

Pr(Xn = xn|X1 = x1, · · · , Xn−1 = xn−1) = Pr(Xn = xn|Xn−1 = xn−1),

for all x1, x2, ..., xn and n = 2, 3, .... In this case, the joint probability distribution function (pdf) of the
r.v.’s X1, X2, ..., Xn can be written as

Pr(X1 = x1, · · · , Xn = xn) =
n∏
k=1

Pr(Xk = xk|Xk−1 = xk−1).

If X1, X2, ... are Markov chain and Pij ≡ Pr(Xn = j|Xn−1 = i) does not depend on n, i.e.,

Pr(Xn = j|Xn−1 = i) = Pr(X2 = j|X1 = i), n = 2, 3, ...
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then the chain is said to be time invariant (or homogeneous). In this paper, Markov chains are assumed
to be time invariant, so that, they can be characterized by its initial state and a probability transition

matrix P = [Pij ]. Also, the pdf of the process at time n, i.e., π
(n)
i ≡ Pr(Xn = i) is characterized by the

pdf at time n− 1 and Pij such that

π
(n)
i =

∑
i

Pr(Xn = j,Xn−1 = i)

=
∑
i

Pr(Xn−1 = i).P r(Xn = j|Xn−1 = i)

=
∑
i

Pr(Xn−1 = i)Pij .

If the pdf π
(n)
i does not depend on n, i.e.

π
(n)
i = π

(1)
i , ∀n = 2, 3, ...,

then the pdf is said to be stationary. In this case, the stationary pdf πi ≡ Pr(Xn = j) is the solution to
the equation system

πj =
∑
i

πiPij

The entropy of r.v. X with pdf f(.) has been defined to be H(X) = −E(log f(X)). It implies that the
entropy of r.v.’s X1, X2, ..., Xn with joint pdf (1.1) is given by the following chain rule

H(X1, X2, · · · , Xn) =
n∑
k=1

H(Xk|X1, X2, · · · , Xk−1). (2)

Specially, the entropy of a sequence of independent r.v.’s X1, X2, ..., Xn is
∑n
i=1H(Xi), where H(Xi) is

the entropy of r.v. Xi, i = 1, 2, .... Consequently, the entropy of iid r.v.’s X1, X2, ..., Xn is nH(X1). This
implies that the average length of a code can increase linearly with the sequence length (n), and the slope
(rate) of H(X1).

The entropy rate of a stochastic process X1, X2, ... is defined by

H(χ) = lim
n→∞

1

n
H(X1, X2, · · · , Xn),

when the limit exists. The rate obviously is constant H(X1) for iid r.v.’s X1, X2, ... . Also, the entropy
rate of independent r.v.’s X1, X2, ... given by

H(χ) = lim
n→∞

1

n

n∑
i=1

H(Xi)

may or may not exist.

The entropy rate has also been defined by

H ′(χ) = lim
n→∞

H(Xn|X1, X2, · · · , Xn−1),

when the limit exists. This rate is actually the entropy of the most recent output given all past outputs.
Obviously, H(Xχ) = H ′(χ) for a sequence of iid r.v.’s. This equality also holds for stationary stochastic
processes. To see this, let X1, X2, ... be an stationary stochastic process. Then,

H(Xn+1|X1, X2, · · · , Xn) ≤ H(Xn+1|X2, X3, · · · , Xn)

= H(Xn|X1, X2, · · · , Xn−1),
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where the inequality follows from the fact that conditioning reduces entropy and the equality follows
from the stationarity of the process. Hence, H(Xn|X1, X2, ..., Xn−1) is a decreasing sequence in n and,
consequently,

H ′(χ) = lim
n→∞

H(Xn|X1, X2, · · · , Xn−1)

exists. Also, from the chain rule (1.2), we obtain

H(χ) = lim
n→∞

1

n

n∑
i=1

H(Xi) = lim
n→∞

1

n

n∑
i=1

H(Xi|X1, X2, · · · , Xi−1)

where, by Cesaro mean, we have

lim
n→∞

1

n

n∑
i=1

H(Xi|X1, X2, · · · , Xi−1) = lim
n→∞

H(Xn|X1, X2, · · · , Xn−1)

= H ′(χ).

The above equalities implies thatH(χ) = H ′(χ) for stationary stochastic processes. Specially, the entropy
rate of a stationary Markov chain X1, X2, ... is given by

H(χ) = H ′(χ)

= lim
n→∞

H(Xn|X1, X2, · · · , Xn−1)

= lim
n→∞

H(Xn|Xn−1)

= H(X2|X1).

Hence, for the stationary Markov chain with transition matrix P = [Pij ] and X1 ∼ πi, the entropy rate
of the Markov chain is then given by

H(χ) = H(X2|X1)

= −
∑
ij

πiPij logPij

=
∑
i

πi(−
∑
j

Pij logPij), (3)

i.e., a weighted sum of the entropy values for each state. [2]

2 Main results

Let X be a nonnegative integer valued r.v. with pdf πi = Pr(X = i), i = 0, 1, ... . According to Steutel
and van Harn (1979), the binomial thinning operator ◦ is defined as:

α ◦X =
X∑
i=1

Bi(α),

where counting series Bi(α) is a sequence of iid binary r.v.’s with P (Bi(α) = 1) = 1−P (Bi(α) = 0) = α
and α ∈ [0, 1]. It can be easily shown that the pdf of α ◦X is given by

φk ≡ Pr(α ◦X = k) =
∑
i

Pr(X = i)Pr(α ◦X = k|X = i)

=
∑
i

πi

(
i
k

)
αk(1− α)i−k,

i.e., a mixture of binomial distributions Bin(i, α) with mixing pdf πi. (see e.g., [1], [3] and [4])
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This implies that ifX1, X2, ... is an integer valued stochastic process with stationary pdf πi ≡ Pr(Xn =
i), n = 1, 2, ..., then the stationary pdf of thinned process α ◦ X1, α ◦ X2, ... is φk and the entropy of
α ◦Xn is a weighted sum of the binomial entropy given by

H(α ◦Xn) = −E(logφα◦Xn)

= −
∑
k

φk logφk

=
∑
i

πiH(Si), (4)

where Si ∼ Bin(i, α), i = 1, 2, ... . Furthermore, the entropy rate of stationary integer valued thinned
process α ◦X1, α ◦X2, ... is given by

H(α ◦ χ) = H ′(α ◦ χ)

= lim
n→∞

1

n

n∑
i=1

H(α ◦Xi). (5)

The entropy of α ◦Xn’s given by (2.1) have been shown in Figure 1 for α = 0.01, 0.02, ..., 1 and Xn ∼ πi
is Poisson(λ) and Geometric(p) distributed r.v. with λ = 1, 50 and p = 0.1, 0.9. We see two different
result for small and large values of λ and p. For the large value of λ we see more entropy, and with both
small and large value of λ we see the maximum entropy for α = 0.5. In contrast, for the small value of
p we see more entropy, but again with both small and large value of p we see the maximum entropy for
α = 0.5.

The entropy rate of α ◦Xn’s given by (2.2) have been shown in Figure 2 for α = 0.1, 0.9 and through
n = 1000 simulated r.v.’s from Poisson(λ) and Geometric(p) with λ = 1, 2, ..., 100 and p = 0.01, 0.02, ..., 1
. Again we see two different entropy rates for small and large values of λ and p. For both small and large
values of α, thinned Poisson(λ) processes have the same increasing concave entropy rate. In contrast,
for both small and large values of α, thinned geometric(p) processes have the same decreasing convex
entropy rate.

The integer valued first-order autoregressive (INAR(1)) process was independently introduced by
McKenzie (1985) and Al-Osh and Alzaid (1987) based on the binomial thinning ◦ operator. Integer
valued stochastic process X1, X2, ... follows INAR(1) model, if

Xn = α ◦Xn−1 + εn, n = 2, 3, ..., (6)

where εn’s known as innovations are iid nonnegative integer valued r.v.’s and independent of all the binary
iid r.v.’s Bi(α) and Xn−1. If Xn is the population at time n then α ◦Xn−1 and εn can be respectively
interpreted as the number of survivors and the number of immigrants at time n from the previous period.
It has been shown that an stationary INAR(1) process (2.3) has a Poisson marginal distribution (with
mean λ) if and only if the innovations also follow a Poisson distribution (with mean λ(1−α)). (see, e.g.,
[1] and [3])

Let X1, X2, ... follow a INAR(1) process (2.3) wherein innovations εn’s follow stationary pdf qk ≡
Pr(εn = k), k = 0, 1, .... Then, the process forms a stationary Markov chain with transition probabilities

pij ≡ P (Xn = j|Xn−1 = i)

=

min (i,j)∑
k=0

(
i
k

)
αk(1− α)i−kqj−k, i, j = 0, 1, · · · ,

giving the probability of going from state i to state j in a single step Hence, the entropy rate is given by
(1.3), wherein πi ≡ Pr(Xn = i) is the stationary pdf of Xn.

The entropy rate (1.3) of INAR(1) process (with πi ≡ Poisson(λ) marginal distribution) has been
shown in Figure 3 for λ = 1, 2, ..., 100 and α = 0.01, 0.02, ..., 1. The entropy rate is non-monotone and
concave in λ and decreasing concave in α. For small values of α we have more entropy rate. However,
for both small and large values of α we have maximum entropy for λ ≈ 80.
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Figure 1: The entropy of thinned process α ◦Xn.
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Figure 2: The entropy rate of thinned process α ◦Xn.
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Topics in maximum entropy modeling in continuous
and discrete setting

Asadi, M.

Department of Statistics, University of Isfahan, Isfahan, Iran
Email: asadi4@hotmail.com

Abstract

In this talk we address some new maximum entropy (ME) methods for modeling the distribution
of time to an event in both continuous and discrete setting. In continuous case, after reviewing some
of the existing results in the literature, we talk a new method which provides characterizations of
change point models such as the piecewise exponential distribution. In discrete case it is proved
by authors that within the class ultra log-concave distributions (of order n) the Poisson (binomial)
distribution is ME. We define a new class of discrete distributions called the weak ultra log-concave
(WULC) distributions which includes the negative binomial distribution as boundary. We rise the
conjecture that the negative binomial distribution is ME in the class of WULC distributions.

Keywords: Maximum entropy, Log-concave, WULC distributions.
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On robustness of entropy-based goodness of fit tests

Alizadeh Noughabi, R., Aminghafari, M. and Mohammadpour, A.

Department of Statistics, Faculty of Mathematics and Computer Science,

Amirkabir University of Technology, Tehran, Iran
Email: adel@aut.ac.ir

Abstract
We study the robustness of a few entropy and classic goodness of fit tests. We investigate ro-

bustness of normality and exponentially tests with respect to heavy tailness and dependence. Non-
Gaussian stable distributions are considered for the alternative hypotheses and exchangeability as-
sumption is assumed under the null hypothesis. Our simulation results show that classical tests are
more sensitive with respect to a few entropy tests for heavy tail data. However, the entropy and
classical tests are robust with respect to the exchangeability assumption.

Keywords: Goodness-of-fit, Entropy, Power of test, Stable distribution.

1 Introduction

The goodness of fit tests had a long history. Well know goodness of fit tests are nonparametric and
asymptotically efficient. That is, they can apply for testing almost all family of distributions under a few
conditions, without any changes in the test statistic of the goodness of fit tests, and critical value can
be computed for large sample sizes. The usual best testing parametric methods cannot be applied to a
goodness of fit test problem. This is the main reason that, recently many authors focused on introducing
goodness of fit tests for a known density function under simple null hypothesis H0 : F = F0 (versus
H1 : F ̸= F0) to improve power of the well-known goodness of fit tests. That is, their proposed test
function can be applied just for a parametric distribution F0. So, for another distribution, we need a
major change in the test statistic or testing method. The idea of introducing a new test function can
be conducted in several ways: using the characterization results, introducing efficient estimation of the
test function, or proposing new tools to make a sensitive test statistic. These methods usually have not
been analytical solution and need many simulation studies to find out the critical values and checking its
robustness or sensitiveness with respect to different alternative hypothesis distributions. This is the main
drawback of such a goodness of fit tests. Because we cannot check all alternative family of distributions
or check their robustness with respect to the assumptions of a goodness of fit test. However, we can
compare them with the best parametric test.

Unfortunately, we have many goodness of fit tests without any mathematical justification of power
function behavior. This article proposes considering three mentioned directive points. We consider a
flexible alternative family of distributions by the name of stable laws and propose to reduce the inde-
pendence assumption to exchangeability assumption, as an example. Finally, we suggest to consider a
benchmark for the best power that is the Neyman-Pearson power.

In the next two sections, we focus on tests for normal and exponential distribution and consider a
stable law as the alternative hypothesis. Stable law was introduced by Paul Lévy in his study of sums of
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independent and identically distributed terms in the 1920s. A stable distribution characterized by four
parameters: an index of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0
and a location parameter δ ∈ R. A stable distribution specified by its characteristic function and its as
follows

φX (t) =

{
exp

{
−γα|t|α

[
1− iβ

(
tan πα

2

)
(sign t)

]
+ iδt

}
α ̸= 1,

exp
{
−γ |t|

[
1 + iβ 2

π (sign t) log |t|
]
+ iδt

}
α = 1.

where sign t is sign function, see Nolan [3]. We denote it by S(α, β, γ, δ) and reduce it to S(α, β) when
γ = 1, δ = 0.

In recent years, many researchers construct a test for exponentiality and normality based on various
entropy estimators. The most popular estimator was introduced by Vasicek [5]. Also Ebrahimi et al.
[12] and Correa [13] stated nonparametric entropy estimators. Testing exponentiality discussed by many
authors. See, for example, [1, 2, 3, 5]. For test of normality based on entropy we refer to Arizono and
Ohta [7], Mudholkar and Lin [8], Esteban et al. [2], Alizadeh Noughabi and Arghami[10] and Zamanzade
and Arghami [8].

In section 2, we use Kullback Leibler divergence for testing exponentiality versus asymmetric positive
stable distributions (α < 1, β = 1) and compute the powers of test through a Mone-Carlo simulation
study. In section 3, we compared the power of normality tests against the symmetric stable distributions
(β = 0). In section 4, discussed about robustness of normality tests under the exchangeability assump-
tion. Last section states a few concluding remarks.

2 Testing Exponentiality Based on Kullback-Leibler Informa-
tion

In order to construct a test, we use the Kullback-Leibler discrimination function given by

KL (f, f0) =

∫ +∞

−∞
f (x) log

(
f (x)

f0 (x)

)
dx. (1)

The evaluation of KL (f, f0) requires the knowledge of f and f0, which is not operational. We use
Vasicek’s estimator Hmn to estimate entropy H(f). Also, use the sample mean for estimating parameter
of the exponential distribution λ by λ = 1

x̄ and estimate KL(f : f0) by

Imn = −Hmn + log(x̄) + 1.

So, large values of Imn indicate that the sample is from a non-exponential distribution.
Ebrahimi et al. [5] consider a monotone transformation of Imn, i.e.

KLmn = exp(Imn) = exp(Hmn − log(x̄)− 1).

Positive stable distributions (α < 1, β = 1) chosen as alternative hypothesis. The simulation results are
reported in tables 1-3.

Table 1: Power comparison for the exponentiality hypothesis versus positive stable law with different
index, n = 10, and m = 3, at significant level 0.05

Alt TV KS Kuiper C-VM AD Watson

S(0.2,1) 0.973 0.996 0.994 0.997 0.999 0.994

S(0.4,1) 0.701 0.909 0.865 0.915 0.931 0.872

S(0.5,1) 0.521 0.790 0.737 0.806 0.816 0.749

S(0.7,1) 0.383 0.515 0.489 0.528 0.499 0.518

S(0.9,1) 0.979 0.940 0.969 0.937 0.910 0.968
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Table 2: Power comparison for the exponentiality hypothesis versus positive stable law with different
index, n = 20, and m = 4, at significant level 0.05

Alt TV KS Kuiper C-VM AD Watson

S(0.2,1) 1 1 1 1 1 1

S(0.4,1) 0.979 0.995 0.990 0.996 0.997 0.991

S(0.5,1) 0.915 0.968 0.949 0.974 0.974 0.958

S(0.7,1) 0.842 0.786 0.831 0.811 0.808 0.845

S(0.9,1) 1 0.999 1 0.999 0.999 1

Table 3: Power comparison for the exponentiality hypothesis versus positive stable law with different
index, n = 40, and m = 6, at significant level 0.05

Alt TV KS Kuiper C-VM AD Watson

S(0.2,1) 1 1 1 1 1 1

S(0.4,1) 0.999 1 1 1 1 1

S(0.5,1) 0.997 0.999 0.998 0.999 0.999 0.999

S(0.7,1) 0.995 0.967 0.991 0.979 0.985 0990

S(0.9,1) 1 1 1 1 1 1

3 Testing normality based on entropy estimators

We compare the power of tests based on entropy and classical tests when alternative has a symmetric
stable distribution. For this mean, we compare the powers of the tests based on TVmn, TEsmn ,TCmn
and some classical tests. We recall that

TVmn =
exp(Hmn)

σ̂
,

TEsmn =
exp(HEsmn)

σ̂
,

TCmn =
exp(HCmn)

σ̂
.

where σ̂ =
√
(1/n)

∑n
i=1(Xi − X̄)2. Symmetric stable distributions (β = 0) are chosen as alternative

hypothesis. In tables 4-6 simulation results are shown.

Table 4: Power comparison for the normality hypothesis versus symmetric stable law with different index,
n = 10, and m = 3, at significant level 0.05

Entropy Classic

Alt TV TC TEs KS Kuiper C-VM AD Watson

S(1.1,0) 0.368 0.320 0.557 0.489 0.487 0.524 0.529 0.507

S(1.2,0) 0.306 0.267 0.485 0.415 0.413 0.448 0.458 0.433

S(1.3,0) 0.257 0.232 0.425 0.349 0.345 0.378 0.386 0.367

S(1.4,0) 0.209 0.190 0.352 0.285 0.281 0.313 0.319 0.299

S(1.5,0) 0.169 0.161 0.292 0.235 0.229 0.254 0.264 0.242

S(1.6,0) 0.143 0.131 0.237 0.185 0.178 0.203 0.217 0.193

S(1.7,0) 0.108 0.103 0.176 0.142 0.139 0.159 0.167 0.147

S(1.8,0) 0.085 0.085 0.130 0.104 0.102 0.115 0.120 0.106

S(1.9,0) 0.063 0.066 0.088 0.069 0.071 0.080 0.081 0.075

4 Robustness of test for normality

In this section, we investigate about robustness of entropy and classical tests with respect to the exchange-
ability assumption. For identically distributed random variables, exchangeability is a weaker condition
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Table 5: Power comparison for the normality hypothesis versus symmetric stable law with different index,
n = 20, and m = 4, at significant level 0.05

Alt TV KS Kuiper C-VM AD Watson

S(1.1,0) 0.601 0.765 0.781 0.802 0.809 0.798

S(1.2,0) 0.502 0.673 0.692 0.717 0.732 0.711

S(1.3,0) 0.425 0.588 0.605 0.632 0.650 0.627

S(1.4,0) 0.349 0.484 0.501 0.534 0.554 0.523

S(1.5,0) 0.285 0.397 0.409 0.442 0.466 0.431

S(1.6,0) 0.221 0.316 0.328 0.356 0.378 0.346

S(1.7,0) 0.166 0.226 0.235 0.255 0.276 0.246

S(1.8,0) 0.117 0.155 0.157 0.176 0.191 0.168

S(1.9,0) 0.081 0.099 0.098 0.107 0.118 0.103

Table 6: Power comparison for the normality hypothesis versus symmetric stable law with different index,
n = 40, and m = 6, at significant level 0.05

Alt TV KS Kuiper C-VM AD Watson

S(1.1,0) 0.868 0.952 0.963 0.970 0.971 0.971

S(1.2,0) 0.785 0.906 0.923 0.932 0.939 0.934

S(1.3,0) 0.678 0.831 0.854 0.872 0.884 0.872

S(1.4,0) 0.558 0.731 0.758 0.781 0.805 0.782

S(1.5,0) 0.451 0.618 0.643 0.674 0.703 0.674

S(1.6,0) 0.351 0.501 0.522 0.555 0.587 0.552

S(1.7,0) 0.250 0.368 0.392 0.422 0.454 0.417

S(1.8,0) 0.168 0.243 0.254 0.280 0.311 0.276

S(1.9,0) 0.098 0.142 0.142 0.154 0.170 0.151

then independence. That is, we generate identically normally distributed under the null hypothesis with
correlation ρ. We investigate robustness of type one error, the probability of rejecting the null when it is
true, with respect to the exchangeable normal data. We recall that, the exchangeable normal distribution
can be characterized through the following equation

X = (X1, . . . , Xn)
′ ∼ Nn(µ,Σ); µ = (µ, . . . , µ)′, Σ = σ2


1 ρ · · · ρ
ρ 1 · · · ρ
...

... · · ·
...

ρ ρ · · · 1


if and only if

Xi =
√
ρZ0 +

√
1− ρZi, i = 1, . . . , n;

where (Z0, Z1, . . . , Zn) is a standard normal random sample.
A part of simulation results are summarized in table 7. This is shown that the robustness of entropy

and classical tests with respect to the exchangeability assumption.

5 Conclusion

• For exponential distribution, when the alternative hypothesis is a stable distribution; power of test
based on entropy, is less than or equals to the classical tests. Tables 1-3 show that Watson is the
best.

From table 5 we can say that in entropy tests, we prefer the test based on Van Es estimator (TEs).
This test also has the high performance among the others.

• When the alternative hypothesis is a stable distribution, the classical tests have a good performance,
and we can use them.
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Table 7: Percentage of rejecting the null hypothesis for exchangeable normal observations with location
zero, scale 1, and correlation 0.2 with m = 3 at significant level 0.1

Test n 0.2 0.5 0.8

Entropy 10 0.09810 0.09844 0.9916

40 0.1024 0.10186 0.10472

AD 10 0.10116 0.10034 0.09914

40 0.09932 0.1006 0.10138

KS 10 0.10162 0.10014 0.10058

40 0.10000 0.10188 0.10332

• Table 7 shows that the entropy and classical are robust tests with respect to the exchangeability
assumption.
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Abstract

In this paper, we introduce a statistic by the name of energy statistic. It is used to construct
a goodness of fit tests. Also, we present an application of the energy statistic as a test for stable
distribution. In certain cases, normal and Cauchy, we have been compared power of them with the
entropy and classical tests. Our simulation results show that a test based on energy is better than a
few entropy tests in some cases.

Keywords: Goodness-of-fit, Energy statistic, Entropy, Power of test.

1 Introduction

One of the statistical problems is to test how applicable n independent measurments agree on a probability
model for the experiment. A statistical test, which is designed for deciding whether or not a random
sample may have been drawn by a specified distribution F0 is called goodness of fit test.

Stable distributions are a rich class of probability distributions that allow skewness and heavy tails
and have many intriguing mathematical properties. A stable distribution specified by four parameters,
an index of stability α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0 and finally
a location parameter δ ∈ ℜ. A stable distribution determined by its characteristic function, that is
X ∼ S(α, β, γ, δ) if and only if φX (t) as follows

φX (t) =

{
exp

{
−γα|t|α

[
1− iβ

(
tan πα

2

)
(sign t)

]
+ iδt

}
α ̸= 1,

exp
{
−γ |t|

[
1 + iβ 2

π (sign t) log |t|
]
+ iδt

}
α = 1.

where sign t is sign function, see Nolan [3]. There is not a closed form for stable distributions and this
issue has been overcome partly by the development of computer programs. In this paper for all parame-
terizations, the notation S(α, β) = S(α, β, 1, 0) will be used.

Suppose that we have a random sample of size n with probability distribution F and density function
f . Vasicek (1976) introduced the estimate of entropy based on order statistics. Many researchers have
been interested in test normality based on entropy, see Vasicek [5], Ebrahimi et al. [5], Esteban et al. [2],
Yousefzadeh and Arghami [7] and Zamanzade and Arghami [8].

In section 2, we introduce the energy statistic and in used to for goodness of fit for stable distribu-
tions. In section 3, compare the powers of test based on energy with the powers of entropy-based tests.
In section 4, we present a test for Cauchy distribution, as a member of stable family distributions, based
on entropy and then compare power of this test with test based on energy statistic. In last section, state
some concluding remarks.
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2 Energy statistic

The energy statistic discussed by Rizzo [4] for goodness of fit test. The original energy statistic is as
follows

Qn = n
∫ +∞
−∞ |φFn (t)− φF0 (t)|

2 1
πt2 dt

= n

{
2
n

n∑
j=1

E |xj −X| − E |X −X ′| − 1
n2

n∑
j,k=1

|xj − xk|

}
,

(1)

where φ is characteristic function and X is a random variable from F0, also X
′ is independent copy of X.

The formula (1) is useful if E |xj −X| <∞, and if X has a stable distribution with α < 2, E |xj −X| is
not finite. A modified energy statistic for testing stable distribution proposed as follows

Qn,s = n

 2

n

n∑
j=1

E|xj −X|s − E|X −X ′|s − 1

n2

n∑
j,k=1

|xj − xk|s
 , (2)

where X ∼ S(α, β, γ, δ) and s is less than α. Yang [6] by some algebraic operations shows that Qn,s can
be summarized as follows. If α ̸= 1

Qn,s =
4
πΓ (1 + s) sin

(
πs
2

) n∑
j=1

∫∞
0

1−et
α
cos(βtα tan(πα

2 )−xjt)
ts+1

−n2
α+s
α

π Γ
(
α−s
α

)
Γ (s) sin

(
πs
2

)
− 1

n

n∑
j,k=1

|xj − xk|s.
(3)

If α = 1

Qn,s =
4
πΓ (1 + s) sin

(
πs
2

) n∑
j=1

∫∞
0

1−et cos(β 2t log t
π +xjt)

ts+1

−n21+s

π Γ (1− s) Γ (s) sin
(
πs
2

)
− 1

n

n∑
j,k=1

|xj − xk|s.
(4)

3 Compare goodness of fit tests for normality

To specify that a random sample follows from H0 with a probability density function f0, we must have
a test statistic. In this section, we compare the power of tests based on energy statistic and entropy. To
do this, we calculate the powers of the tests based on TD, TVmn, TEsmn and TCmn. Esteban et al. [2],
in their study of power comparisons of normality tests; offer to classify the alternatives into the following
groups

Group I: Support= (−∞,+∞), symmetric.
Group II: Support= (−∞,+∞), asymmetric.
Group III: Support= (0,+∞).
Group IV : Support= (0, 1).
It is logical that we consider the groups I and II, but we have studied all groups. In table 8 the

critical values for test of normality mentioned.

Table 8: Critical values of energy statistic for α = 0.05

n s = 0.3 s = 0.6 s = 0.9

10 1.639 2.374 3.629

20 1.595 2.306 3.608

40 1.484 2.122 3.558

* Skew normal (SN) with parameters µ = 0 (location), σ = 1 (scale) and a = 2 (shape).
**Skew double exponential (SDE) with parameters a = 1, β = 2 and µ = 0 (location) (mixture exponen-
tial distribution with mean β = 2, and the negative of an exponential distribution with mean a = 1).
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Table 9: Power comparison test for n = 10, m = 2 under the alternative in group I with α = 0.05

Entropy Energy

Alt TD TV TEs TC s = 0.3 s = 0.6 s = 0.9

t(1) 0.583 0.442 0.591 0.409 0.265 0.431 0.513

t(3) 0.201 0.091 0.167 0.083 0.052 0.046 0.047

Laplace 0.163 0.065 0.140 0.057 0.058 0.047 0.033

Logistic 0.087 0.051 0.074 0.047 0.074 0.111 0.117

Average 0.258 0.216 0.243 0.149 0.112 0.159 0.177

Table 10: Power comparison test for n = 40, m = 4 under the alternative in group I with α = 0.05

Entropy Energy

Alt TD TV TEs TC s = 0.3 s = 0.6 s = 0.9

t(1) 0.991 0.960 0.987 0.949 0.401 0.815 0.860

t(3) 0.612 0.289 0.541 0.249 0.117 0.103 0.072

Laplace 0.533 0.197 0.451 0.198 0.205 0.143 0.092

Logistic 0.210 0.053 0.160 0.048 0.066 0.170 0.166

Average 0.586 0.374 0.534 0.351 0.197 0.308 0.297

Table 11: Power comparison test for n = 10, m = 2 under the alternative in group II with α = 0.05

Entropy Energy

Alt TD TV TEs TC s = 0.3 s = 0.6 s = 0.9

Gumbel 0.154 0.101 0.113 0.097 0.129 0.148 0.158

SN(0,1,2)* 0.071 0.058 0.062 0.053 0.767 0.720 0.612

SDE(0,1,2)** 0.216 0.117 0.178 0.111 0.261 0.396 0.436

Average 0.147 0.092 0.117 0.087 0.386 0.421 0.402

Table 12: Power comparison test for n = 40, m = 4 under the alternative in group II with α = 0.05

Entropy Energy

Alt TD TV TEs TC s = 0.3 s = 0.6 s = 0.9

Gumbel 0.530 0.399 0.355 0.394 0.681 0.732 0.765

SN(0,1,2) 0.149 0.099 0.097 0.102 1 1 1

SDE(0,1,2) 0.693 0.420 0.586 0.385 0.673 0.880 0.922

Average 0.457 0.306 .0346 0.293 0.785 0.871 0.896

Table 13: Power comparison test for n = 10, m = 2 under the alternative in group III with α = 0.05

Entropy Energy

Alt TD TV TEs TC s = 0.3 s = 0.6 s = 0.9

Exp(1) 0.394 0.416 0.330 0.404 0.999 1 1

Gamma(2,1) 0.222 0.179 0.158 0.173 1 1 1

Gamma(0.5,1) 0.631 0.782 0.679 0.786 1 1 0.809

LN(0,1) 0.565 0.552 0.485 0.542 1 1 1

Weibull(0.5,1) 0.813 0.931 0.876 0.926 0.998 1 0.941

Average 0.525 0.572 .0506 0.566 0.999 1 0.950

4 A goodness of fit test for Cauchy distribution

4.1 Based on energy

Cauchy distribution is a member of family of stable distributions. As an example of stable distribution, we
consider the Cauchy distribution for goodness of fit test. Formula (4) by some simple algebraic operation,
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Table 14: Power comparison test for n = 10, m = 2 under the alternative in group IV with α = 0.05

Entropy Energy

Alt TD TV TEs TC s = 0.3 s = 0.6 s = 0.9

Uniform 0.028 0.167 0.061 0.170 1 1 1

Beta(2,2) 0.025 0.082 0.037 0.086 1 1 1

Beta(2,1) 0.093 0.173 0.092 0.182 1 1 1

Average 0.049 0.141 0.063 0.129 1 1 1

simplified as follows

Qn,s = 2

n∑
j=1

(
1 + xj

2
)s/2 cos (s arc tanxj)
cos
(
πs
2

) − n2s

cos
(
πs
2

) − 1

n

n∑
j,k=1

|xj − xk|s. (5)

4.2 Based on entropy

For this mean, we use the Kullback-Leibler discrimination function given by

KL (f, f0) =

∫ +∞

−∞
f (x) log

(
f (x)

f0 (x)

)
dx. (6)

The evaluation of KL (f, f0) requires the knowledge of f and f0, which is not operational. We can rewrite
(6) to

KL (f, f0) = −H (f)−
∫ +∞

−∞
f (x) log (f0 (x))dx. (7)

We use Vasiceks estimator Hmn to estimate H(f) and to estimate
∫ +∞
−∞ f (x) log (f0 (x))dx, use the below

expression

1

n

n∑
i=1

log (f0 (xi, µ̂, σ̂)),

where µ̂ and σ̂ are the maximum likelihood estimators of µ and σ.
So, an estimator KLmn of KL (f, f0) is obtained as follows

KLmn = −Hmn − 1

n

n∑
i=1

log (f0 (xi, µ̂, σ̂))

= −Hmn − log (σ̂) + log (π) +
1

n

n∑
i=1

log
(
σ̂ + (xi − µ̂)

2
)
.
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Table 15: Power comparison test for n = 20 with α = 0.05

Entropy Energy

Alt m = 2 m = 3 m = 4 s = 0.1 s = 0.2 s = 0.3 s = 0.4 AD

Stable(0.5,0) 0.101 0.022 0.009 0.645 0.719 0.766 0.791 0.401

Stable(0.8,0) 0.039 0.024 0.019 0.126 0.152 0.1839 0.1974 0.088

Stable(1.2,0) 0.089 0.113 0.114 0.035 0.030 0.024 0.017 0.036

Stable(1.5,0) 0.210 0.281 0.287 0.047 0.037 0.027 0.014 0.035

Stable(1.8,0) 0.411 0.526 0.555 0.066 0.053 0.0401 0.021 0.037

Stable(2,0) 0.595 0.727 0.760 0.078 0.064 0.045 0.029 0.038

Normal 0.595 0.728 0.754 0.234 0.211 0.168 0.096 0.045

t(2) 0.168 0.218 0.224 0.050 0.037 0.028 0.015 0.031

t(3) 0.266 0.347 0.371 0.078 0.064 0.048 0.025 0.027

t(4) 0.326 0.436 0.451 0.105 0.084 0.064 0.033 0.034

t(5) 0.376 0.491 0.510 0.116 0.102 0.073 0.43 0.035

Laplace 0.245 0.326 0.346 0.108 0.089 0.072 0.037 0.032

Gumbel 0.589 0.691 0.741 0.278 0.254 0.226 0.166 0.281

Table 16: Power comparison test for n = 100 with α = 0.1

Entropy Energy

Alt m = 6 m = 7 s = 0.1 s = 0.2 s = 0.3 s = 0.4 AD

Stable(0.5,0) 0.238 0.126 0.999 0.999 0.999 0.999 0.988

Stable(0.8,0) 0.054 0.047 0.411 0.461 0.506 0.550 0.256

Stable(1.2,0) 0.271 0.284 0.154 0.156 0.143 0.137 0.108

Stable(1.5,0) 0.710 0.704 0.566 0.599 0.621 0.611 0.244

Stable(1.8,0) 0.964 0.964 0.949 0.971 0.977 0.984 0.559

Stable(2,0) 1 1 0.999 0.999 1 1 0.842

Normal 1 1 1 1 1 1 1

t(2) 0.745 0.755 0.679 0.735 0.742 0.755 0.439

t(3) 0.964 0.967 0.969 0.984 0.987 0.989 0.856

t(4) 0.944 0.995 0.997 0.999 0.999 0.999 0.968

t(5) 0.999 0.999 0.999 1 1 1 0.992

Laplace 0.999 0.999 0.994 0.997 0.999 0.999 0.950

Gumbel 1 1 1 1 1 1 1

5 Main results

• For test of normality in distributions of group I, mostly, the entropy tests are better than the test
based on energy statistics.

• In group II, In most cases the test of normality based on the energy statistic is better than the
entropy tests.

• In the other two groups the energy test, always is better. It that means if an irrational distribution
be considered as an alternative energy test detects very well.

• In test for Cauchy distribution, in some cases entropy test has more power. However, it can be said
by increasing n the power of energy test more improved to entropy test.
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On entropy order for order statistics and their concomitants
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Abstract

Let (X,Y ) and (S, T ) be two continuous random vectors. It is shown that if S, [Y |X = x]
and [T |S = x], for all x are DFR, Y is stochastically increasing in X and (X,Y ) ≤sst (S, T ),
then H(X,Y ) ≤ H(S, T ), where H(Z) is Shannon entropy of a random variable Z. Let (Xi, Yi),
i = 1, . . . ,max{m,n} be a set of independent copies of (X,Y ). It is also shown that if X and
[Y |X = x], for all x have DFR distributions and Y is stochastically increasing in X, then for i ≤ j
and n − i ≥ m − j, H(Xi:n, Y[i:n]) ≤ H(Xj:m, Y[j:m]). Let (Si, Ti), i = 1, . . . ,max{m,n} be a set
of independent copies of (S, T ). It is observed that under certain set of mild conditions on FX,Y

and FS,T , for i ≤ j and n − i ≥ m − j, H(Xi:n, Y[i:n]) ≤ H(Sj:m, T[j:m]). Finally, we discuss some
conjectures about entropy properties of vector of order statistics corresponding to a random sample
of size n from a symmetric distribution which admits density.

Keywords: Dispersive order, Decreasing failure rate, Strong stochastic order, Symmetric distri-
bution.
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Abstract

In this paper, we assume µ is a probability measure and the conditions for maximal entropy are
provided. The properties of relative entropy for probability measure on polish spaces are also dis-
cussed.

Keywords: Entropy, Uniform distribution, Geometric distribution, Product distribution.

1 Introduction

Let (Ω, A) denote a measure space and ν is a measure. The measure is defined only on a δ-subring of A
since we did not assume that ν is finite. For any probability measure µ ∈ P(ν) define the entropy

H(µ) =

∫
Ω

−f(ω) log(f(ω))dν(ω).

Example 1. Let ν be the counting measure on a countable set Ω, where A is a σ-algebra of all subsets
of Ω and let the measure ν is defines on the δ-ring of all finite subsets of Ω. In this case,

H(µ) =
∑
ω∈Ω

−f(ω) log(f(ω)).

For example, for Ω = N = {0, 1, 2, 3, . . .} with counting measure ν, the geometric distribution P [{k}] =
p(1− p)k has the entropy

∞∑
k=0

−(1− p)kp log((1− p)kp) = log(
1− p

p
)− log(1− p)

p
.

Given two probability measure µ = fν and µ̃ = f̃ν which are both absolutely continuous with respect
to ν. Define the relative entropy

H(µ̃ | µ) =
∫
Ω

f̃(ω) log(
f̃(ω)

f(ω)
)dν(x) ∈ [0,∞].

It is the expectation Eµ̃[l] of the Likelihood coefficient l = log(
f̃(x)

f(x)
). The negative relative entropy

−H(µ̃ | µ) is also called the conditional entropy. We write also H(f | f̃) instead of H(µ̃ | µ).
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Theorem 1.1. 0 ≤ H(µ̃ | µ) ≤ +∞ and H(µ̃ | µ) = 0 if and only if µ = µ̃.

Proof. We can assume H(µ̃ | µ) < ∞. The function u(x) = x log(x) is convex on R+ = [0,∞) and
satisfies u(x) ≥ x− 1.

H(µ̃ | µ) =

∫
Ω

f̃(ω) log(
f̃(ω)

f(ω)
)dν(ω)

=

∫
Ω

f̃(ω)
f̃(ω)

f(ω)
log(

f̃(ω)

f(ω)
)dν(ω)

=

∫
Ω

f̃(ω)u(
f(ω)

f̃(ω)
)dν(ω)

≥
∫
Ω

f̃(ω)((
f(ω)

f̃(ω)
− 1)dν(ω)

=

∫
Ω

f(ω)− f̃(ω)dν(ω) = 1− 1 = 0.

If µ = µ̃, then f = f̃ almost everywhere then
f(ω)

f̃(ω)
= 1 almost everywhere and H(µ̃ | µ) = 0. On the

other hand, if H(µ̃ | µ) = 0, then by the Jensen inequality

0 = Eµ̃[u(
f̃

f
)] ≥ u(Eµ̃[

f̃

f
]) = u(1) = 0.

Therefore, Eµ̃[u(
f̃

f
)] = u(Eµ̃[

f̃

f
]). The strict convexity of u implies that

f̃

f
must be a constant almost

everywhere. Since both f and f̃ are densities, the equality f = f̃ must be true almost everywhere.

Theorem 1.2. The following distributions have maximal entropy,

a) If Ω is finite with counting measure ν. The uniform distribution on Ω has maximal entropy among
all distributions on Ω. It is unique with this property.

b) Ω = N with counting measure ν. The geometric distribution with parameter p = c−1 has maximal
entropy among all distributions on N = {0, 1, 2, 3, . . .} with fixed mean c. It is unique with this
property.

c) Ω = {0, 1}N with counting measure ν. The product distribution ηN , where η(1) = p, η(0) = 1 − p
with p = c/N has maximal entropy among all distributions satisfying E[SN ] = c, where SN (ω) =∑N
i=1 ωi. It is unique with this property.

d) Ω = [0,∞) with Lebesgue measure ν. The exponential distribution with density f(x) = λe−λx with
parameter λ on Ω has the maximal entropy among all distributions with fixed mean c = 1/λ. It is
unique with this property.

e) Ω = R with Lebesgue measure ν. The normal distribution N(m,σ2) has maximal entropy among
all distributions with fixed mean m and fixed variance σ2. It is unique with this property.

f) Finite measures. Let (Ω,A) be an arbitrary measure space for which 0 < ν(Ω) < ∞. Then the
measure ν with uniform distribution f = 1/ν(Ω) has maximal entropy among all other measures on
Ω. It is unique with this property.

Proof. Let µ = fν be the measure of the distribution from which we want to prove maximal entropy
and let µ̃ = f̃ν be any other measure. The aim is to show H(µ̃ | µ) = H(µ) −H(µ̃) which implies the
maximality since by the Theorem 1.1 H(µ̃ | µ) ≥ 0.
In general,

H(µ̃ | µ) = −H(µ̃)−
∫
Ω

f̃(ω) log(f(ω))dν
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so that in each case, we have to show

H(µ) = −
∫
Ω

f̃(ω) log(f(ω))dν. (1)

With
H(µ̃ | µ) = H(µ)−H(µ̃)

we also have uniqueness: if two measures µ̃, µ have maximal entropy, then H(µ̃ | µ) = 0 so that by the
Theorem 1.1 µ = µ̃.

a) The density f = 1/[Ω] is constant. Therefore H(µ) = log(|Ω|) and equation (1) holds.

b) The geometric distribution on N = {0, 1, 2, . . .} satisfies P [{k}] = f(k) = p(1 − p)k. We have
computed the entropy before as

log((1− p)/p)− (log(1− p))/p = − log(p)− (1− p)

p
log(1− p).

c) The discrete density is f(ω) = pSN (1− p)N−SN so that

log(f(k)) = SN log(p) + (N − SN ) log(1− p)

and ∑
k

f̃(k) log(f(k)) = E[SN ] log(p) + (N − E[SN ]) log(1− p).

The claim follows since we fixed E[SN ].

d) The density is f(x) = αe−αx, so that log(f(x)) = log(α) − αx. The claim follows since we fixed
E[X] =

∫
xdµ̃(x) was assumed to be fixed for all distributions.

e) For the normal distribution log(f(x)) = a + b(x −m)2 with two real number a, b depending only
on m and σ. The claim follows since we fixed V ar[X] = E[(x−m)2] for all distributions.

f) The density f = 1 is constant. Therefore H(µ) = 0 which is also on the right hand side of equation
(1).

2 Relative entropy on Polish space

Here we collect properties of relative entropy for probability measures on Polish spaces, relative entropy
is introduced as an information measure and called directed divergence. Let S, X , Y be Polish spaces.
A Polish space is a separable topological space that is compatible with a complete metric. Examples of
Polish spaces are

• Rd with the standard topology,

• any closed subset of Rd (or another Polish space) equipped with the induced topology,

• the space C(T,X ) of continuous functions, T ⊆ (−∞,∞) an interval, X a complete and separable
metric space, equipped with the topology of uniform convergence on compact subsets of T,

• the space D(T,X ) of cádlág functions, T ⊆ (−∞,∞) an interval, a X a complete and separable
metric space, equipped with the Skorohod topology,

• the space P(X ) of probability measures on B(X ), X a Polish space, equipped with the weak con-
vergence topology.



Ghazani, Z. 25

Let µ, ν ∈ P(S). The relative entropy of µ with respect to ν is given by

H(µ∥ν) =

{∫
. S

log
(
dµ
dν (x)

)
µ(dx) if µ≪ ν,

∞ else.

Relative entropy is well-defined as a function P(S) × P(S) → [0,∞]. Indeed, if µ ≪ ν, then a density

f =
dµ

dν
exists by the Radon-Nikodym theorem with f uniquely determined ν-almost surely. In this case,

H(µ∥ν) =
∫
. S
f(x) log(f(x))ν(dx).

Clearly, lim. x→0+x log(x) = 0. Since
∫
.
fdν = 1 and x log(x) ≥ x−1 for all x ≥ 0 with equality if and only

if x = 1, it follows that H(µ∥ν) ≥ 0 with H(µ∥ν) = 0 if and only if µ = ν. Relative entropy can actually
be defined for σ-finite measures on an arbitrary measurable space.

Lemma 2.1 (Basic properties). Properties of relative entropy H(·∥·) for probability measures on a Polish
space S.

(a) Relative entropy is a non-negative, convex, lower semi-continuous function P(S)×P(S) → [0,∞].

(b) For ν ∈ P(S), H(·∥ν) is strictly convex on {µ ∈ P(S) : H(µ∥ν) <∞}.

(c) For ν ∈ P(S), H(·∥ν) has compact sublevel sets.

(d) Let ΠS denote the set of finite measurable partitions of S. Then for all µ, ν ∈ P(S),

H(µ∥ν) = sup. π∈ΠS

∑
. A∈π

µ(A) log

(
µ(A)

ν(A)

)
,

where x log(x/y) = 0 if x = 0, x log(x/y) = ∞ if x > 0 and y = 0.

(e) For every A ∈ B(S), any µ, ν ∈ P(S),

H(µ∥ν) ≥ µ(A) log

(
µ(A)

ν(A)

)
− 1.

Lemma 2.2 (Contraction property). Let ψ : Y → X be a Borel measurable mapping. Let η ∈ P(X ),
γ0 ∈ P(Y). Then

H(η∥γ0 ◦ ψ−1) = inf. γ∈P(Y):γ◦ψ−1=ηH(γ∥γ0), (2)

where inf ∅ = ∞ by convention.

Lemma 2.3 (Chain rule). Let X , Y be Polish spaces. Let α, β ∈ P(X × Y) and denote their marginal
distributions on X by α1 and β1, respectively. Let α(·|·), β(·|·) be stochastic kernels on Y given X such
that for all A ∈ B(X ), B ∈ B(Y),

α(A×B) =
∫
. A
α(B|x)α1(dx), β(A×B) =

∫
. A
β(B|x)β1(dx).

Then the mapping x 7→ H(α(·|x)∥β(·|x)) is measurable and

H(α∥β) = H(α1∥β1) +
∫
. X
H(α(·|x)∥β(·|x))α1(dx).

In particular, if α, β are product measures, then

H(α1 ⊗ α2∥β1 ⊗ β2) = H(α1∥β1) +H(α2∥β2).

The variational representation for Laplace functionals given in below is the starting point for the weak
convergence approach to large deviations. Let Mb(X ) is a space of all bounded measurable function
X → R.
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Lemma 2.4. Let ν ∈ P(S). Then for all g ∈Mb(S),

− log
∫
. S

exp(−g(x))ν(dx) = inf. µ∈P(S)

{
H(µ∥ν) +

∫
. S
g(x)µ(dx)

}
,

Infimum in variational formula above is attained at µ∗ ∈ P(S) given by

dµ∗

dν
=

exp(−g(x))∫
S exp(−g(y))ν(dy)

, x ∈ S.

Proof. Let g ∈ Mb(S), and define µ∗ through its density with respect to ν as above. Notice that µ∗,
ν are mutually absolutely continuous. Let µ ∈ P(S) be such that H(µ∥ν) < ∞. Then µ is absolutely

continuous with respect to ν with density
dµ

dν
, but also absolutely continuous with respect to µ∗ with

density
dµ

dµ∗ =
dµ

dν
· dν
dµ∗ , where

dν

dµ∗ =
eg∫
egdµ∗ . It follows that

H(µ∥ν) +
∫
. S
gdµ =

∫
. S

log

(
dµ

dν

)
dµ+

∫
. S
gdµ

=
∫
. S

log

(
dµ

dµ∗

)
dµ+

∫
. S

log

(
dµ∗

dν

)
dµ+

∫
. S
gdµ

= H(µ∥µ∗)− log
∫
. S
e−gdν.

This yields the assertion since H(µ∥µ∗) ≥ 0 with H(µ∥µ∗) = 0 if and only if µ = µ∗.

Theorem 2.5. Let µ, ν ∈ P(S). Then

H(µ∥ν) = sup. g∈Mb(S)

{∫
. S
g(x)µ(dx)− log

∫
. S

exp(g(x))ν(dx)
}
.

Proof. Let µ, ν ∈ P(S). By 2.4 for every g ∈Mb(S)

H(µ∥ν) ≥ −
∫
. S
gdµ− log

∫
. S
e−gdν,

hence

H(µ∥ν) ≥ sup. g∈Mb(S)

{
−
∫
. S
gdµ− log

∫
. S
e−gdν

}
= sup. g∈Mb(S)

{∫
. S
gdµ− log

∫
. S
egdν

}
.

For g ∈ Mb(S) set J(g) =
∫
. S
gdµ − log

∫
. S
egdν. Thus H(µ∥ν) ≥ sup. g∈Mb

J(g). To obtain equality, it is

enough to find a sequence (gM )M∈N ⊂ Mb(S) such that lim sup. M→∞J(gM ) = H(µ∥ν). We distinguish
two cases.

First case: µ is not absolutelty continuous with respect to ν. Then H(µ∥ν) = ∞ and there exists
A ∈ B(S) such that µ(A) > 0 while ν(A) = 0. Choose such a set A and set gM =M ·1A. Then, for every
M ∈ N, gM = 0 ν-almost surely, thus

∫
.
egMdν =

∫
.
e0dν = 1, hence log

∫
.
egMdν = 0. It follows that

lim sup. M→∞J(gM ) = lim sup. M→∞

∫
. S
gMdµ = lim sup. M→∞M · µ(A) = ∞.

Second case: µ is absolutely continuous with respect to ν. Then we can choose a measurable function
f : S → [0,∞) such that f is a density for µ with respect to ν (f a version of the Radon-Nikodym
derivative dµ/dν), and H(µ∥ν) =

∫
.
f · log(f)dν, where the value of the integral is in [0,∞]. Set

gM (x) = log(f(x)) · 1[1/M,M ](f(x))−M · 1{0}(f(x)), x ∈ S.
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Then

lim. M→∞
∫
. S
gMdµ

= lim. M→∞
∫
. S
f · log(f) · 1[1/M,M ](f)dν

= lim. M→∞

(∫
. S

(
f · log(f) + 1(0,∞)(f)

)
· 1[1/M,M ](f)dν −

∫
. S

1[1/M,M ](f)dν
)

=
∫
. S
f · log(f)dν + ν{f > 0} − ν{f > 0}

= H(µ∥ν)

by dominated convergence and monotone convergence since t · log(t) ≥ −1 for every t ≥ 0 and t · log(t) = 0
if t = 0, hence, for every x ∈ S,

(
f(x) · log(f(x)) + 1(0,∞)(f(x))

)
· 1[1/M,M ](f(x)) ↗ f(x) · log(f(x)) +

1(0,∞)(f(x)) as M → ∞. On the other hand, again usuing dominated and monotone convergence,
respectively,

lim. M→∞ log
∫
. S
egMdν

= log
(
lim. M→∞

∫
. S

(
f · 1[1/M,M ](f) + 1(0,1/M)∪(M,∞)(f) + e−M · 1{0}(f)

)
dν
)

= log
∫
. S
fν = log(1) = 0.

It follows that lim sup. M→∞J(gM ) = lim. M→∞
∫
. S
gMdµ = H(µ∥ν).
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Abstract

Recently, it has been shown by many authors that quantile functions are efficient and equivalent
alternatives to distribution functions in modelling and analysis of statistical data (Nair et al. 2013).
In this talk, the quantile function is recalled and some reliability measures are rewritten in terms of
quantile function. A quantile-based Shannon entropy function introduced by Sunoj and Sankaran
(2012). Here, we consider the cumulative entropy (Rao et al. 2004, Asadi and Zohrevand, 2007)
and obtain the quantile-based dynamic cumulative entropy (QDCE). Some properties of QDCE are
presented.
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Abstract

In economics and social sciences, inequality measures such as Gini index, Peitra index etc., are
commonly used to measure the evenness of probability distributions. In this paper, we first review
some entropy maximization studies under moment and inequality measures constraints. Next, we
consider a generalization of Gini index and based on the principle of maximum-entropy. We find the
probability distribution that maximizes the entropy among all probability distributions supported on
non-negative real values with a given mean and a given generalized Gini index.

Keywords: Maximum-entropy, Inequality measures, Euler’s equation, Generalized Gini index.

1 Introduction

In economic and the social sciences, approximating income distribution with regard to inequality in society
is of interest. In order to measure inequality, we need a scale of inequality to evaluate it. There are various
known measures of inequality among them the Gini index is a famous and well-known measure, which is
calculated based on Lorenz curve. It was proposed by Gini (1936) as a measure of inequality of income. A
low Gini index indicates more equal income distribution, while a high Gini index indicates more unequal
distribution. The Pietra index is another inequality measure that is most useful and appropriate in the
case of asymmetric and skewed probability distributions. There is a generalization of Gini index proposed
by Yitzhaki (1983) attaching different weight to the lower and upper ends of the distributions which is
considered in this paper.

When approximating an unknown probability distribution, the question arises, what is the best ap-
proximation? Jaynes (1957) gave a general answer to this question: the best approach is to ensure
that the approximation satisfies any constraints on the unknown distribution that we are aware of, and
that subject to those constraints, the distribution should have maximum entropy. This is known as the
maximum-entropy principle. The problem of maximizing entropy subject to some constraint have been
studied by many researchers. Recently, some works have been done in the subject of entropy maximiza-
tion based on inequality measures. Eliazar and Sokolov (2010) find distribution that maximize entropy
subject to given mean and Gini index also they find distribution that maximize entropy subject to given
mean and Pietra index. In this research, we intend to develop their results in terms of generalized Gini
index.

In this paper, we consider continuous distributions. Section 2 contains some preliminaries and the
basic tools which will be used in the next sections. In section 3, we review some results on entropy
maximization under some moment constraints. In section 4, the results in terms of entropy maximization
subject to some inequality measures constraints have been presented. Section 5 is devoted to our result
in maximization of entropy with a given generalized Gini index.
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2 Preliminaries

Let X be a random variable having a continuous cumulative density function (cdf) F with probability
density function (pdf) f , then the basic uncertainty measure for distribution F is defined as

H(f) = −
∫ ∞

−∞
f(x) ln f(x)dx, (1)

provided the integral exists.
One of the most well-known integral functional that has been studied in variational calculus is the

Lagrange functional

L(y) =

∫ b

a

G(y(x), y′(x), x)dx, (2)

where the given function G is continuous and has continuous first partial derivatives in each of its
arguments. The simplest variational problem can be stated as follow: Find the curve y = y(x) for which
the functional L(y) has an extremum. There is a result known as Euler’s equation for this problem.

Theorem 2.1 (Gelfand and Fomin, p. 15). Let L(y) be a functional of the form

L(y) =

∫ b

a

G(y(x), y′(x), x)dx,

defined on the set of functions y(x) which have continuous first derivatives in [a, b] and satisfy the boundary
conditions y(a) = A, y(b) = B. Then a necessary condition for L(y) to have an extremum for a given
function y(x) is that y(x) satisfy Euler’s equation

∂G

∂y
− d

dx

∂G

∂y′
= 0.

In several optimization problems, we require the optimal function to satisfy some constraints. In
fact, suppose we are looking for an extremum of the functional (2) subject to the conditions y(a) = A,
y(b) = B and ∫ b

a

Ji(y(x), y
′(x), x)dx = li , i = 1, 2, ...,m,

where l1, l2, ..., lm are constants. In this case a necessary condition for an extremum is that

∂

∂y

(
G+

m∑
i=1

λiJi

)
− d

dx

∂

∂y′

(
G+

m∑
i=1

λiJi

)
= 0,

where λ1, λ2, ..., λm are Lagrange multipliers.

3 Maximum entropy

As stated by Jaynes (1957), when an inference is made on the basis of incomplete information, it should
be drawn from the probability distribution that maximizes the entropy subject to the constraints on the
distribution. The resulting maximum entropy probability distribution corresponds to a distribution which
is consistent with the given partial information but has maximum uncertainty or entropy associated with
it. For illustrating Jayne’s principle, we consider a continuous random variable X with probability density
function f(x) about which partial information in the form of first m moments is given. For obtaining the
’most objective’ probability distribution of X, we must maximize the entropy H(f) which is defined in
(1) subject to the constraints{∫∞

−∞ f(x)dx = 1∫∞
−∞ gi(x)f(x)dx = θi , i = 1, 2, ...,m

(3)
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From Euler’s equation in calculus of variation, one finds maximum entropy probability density function

f(x) = A exp[−c1g1(x)− c2g2(x)− ...− cmgm(x)],

Where A, c1, c2, ..., cm are to be obtain by using the constraints (3). In the following, some special cases
is expressed.

3.1 If the range of the random variable X is [0, 1]

Within the class of probability distributions supported on the unit interval [0, 1], the entropy maximizer
is the uniform distribution.

3.2 If the range of the random variable X is [0,∞)

Within the class of probability distributions supported on non-negative real numbers, and possessing a
given mean, the entropy maximizer is the exponential distribution.

3.3 If the range of the random variable X is (−∞,∞)

1. In the constraints (3), if g1(x) = (x − a)2, where a is a fixed real number, then the maximum
entropy density function is given by

f(x) =
1√
2πθ1

exp

(
− (x− a)2

2θ1

)
,−∞ < x <∞.

In fact, when second order moment about a is prescribed to be θ1, the maximum entropy distribu-
tion is normal with mean a and variance θ1.

2. In the constraints (3), if g1(x) = x and g2(x) = (x − θ1)
2, that is when the mean (θ1) and the

variance θ2 of X is prescribed, then the maximum entropy distribution is normal with mean θ1 and
variance θ2.

4 Maximum entropy based on inequality measures

In this section, this question is answered: what happens when maximizing entropy subject to a given
mean and a given measure of inequality? The answer is provided when inequality measure be dispersion,
Gini index and Pietra index.

4.1 Dispersion

One the most basic approach to gauge statistical heterogeneity is the notion of dispersion: measuring the
fluctuations of the probability distribution around its mean. The dispersion is given by the functional

D(f) =

(∫ ∞

−∞
|x− µ|pdx

) 1
p

, p ≥ 1,

The greater the dispersion, the more scattered and heterogeneous the probability distribution and the
smaller the dispersion, the more concentrated and homogeneous the probability distribution. In the case
p = 2, the dispersion equals the standard deviation, and the square dispersion equals the variance of
distribution. The problem is maximizing entropy of X subject to the constraints

∫∞
−∞ f(x)dx = 1∫∞
−∞ xf(x)dx = µ

D(f) = δ

(4)
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Eliazar and Sokolov (2010) (ref. [1]) showed that the Subbotin’s distribution with following density
function has maximum entropy under above constraints

f(x) =
ϕ(p)

σ
exp

(
−1

p

∣∣∣∣x− µ

σ

∣∣∣∣p) ,−∞ < x <∞,

where σ is a positive scale parameter and ϕ(p) = p1−1/p/2Γ(1/p).

4.2 Gini index

The most widely used tool for analyzing and visualizing income inequality is the Lorenz curve which was
developed by Lorenz (1905) and is defined as follows:

L(u) =
1

µ

∫ u

0

F−1(x)dx, 0 ≤ u ≤ 1, (5)

where F−1(x) = inf{t : F (t) ≤ x}, 0 ≤ t ≤ 1. In fact, L(u) denotes the fraction of total income that
holders of the lowest uth fraction of income possess. Several indices of income inequality are directly
related to this curve, most notably the Gini index. It define as twice the area between the Lorenz curve
and the equality line:

G(f) = 2

∫ 1

0

(u− L(u))dx

Let X be a non-negative random variable. It can be easily show that

G(f) = 1− 1

µ

∫ ∞

0

F̄ 2(x)dx,

where F̄ is survival function of X. Now, the question is what happens when maximizing entropy subject
to a given mean and a given Gini index? In other words, the problem is maximizing the entropy of X
subject to the constraints 

∫∞
−∞ f(x)dx = 1∫∞
−∞ xf(x)dx = µ

G(f) = γ

Eliazar (2010) showed that the survival function of maximum entropy distribution is given by

F̄ (x) =
1

σ exp(ρx) + (1− σ)
, x ≥ 0,

where σ is positive valued parameter depending on γ and ρ = lnσ
(σ−1)µ .

4.3 Peitra index

A second important inequality measure is the Pietra index, which is defined as the maximal vertical
deviation between the Lorenz curve and the equality line

P (f) = max
0≤u≤1

{u− L(u)}.

Eliazar and Sokolov (2010), ref. [2], proposed an alternative formula for the Pietra index as follow:

P (f) =
1

µ

∫ ∞

0

max{0, x− µ}f(x)dx,
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and showed that within the class of probability density functions possessing a given mean and a given
Peitra index that is under following conditions

∫∞
−∞ f(x)dx = 1∫∞
−∞ xf(x)dx = µ

P (f) = η

the entropy maximizer is bi-exponential probability density function

f(x) =

{
c1 exp(αx) if 0 < x < µ,

c2 exp(−βx) if µ < x <∞,

where α and β are real exponents depending on µ and η; c1 and c2 are normalizing coefficients satisfying
the relation ln(c2/c1) = (α+ β)µ.

5 Maximum entropy based on generalized Gini index

There are several generalizations of the Gini index proposed in the literature. An important generalization
of the Gini index was proposed by Yitzhaki (1983).

Gν(f) = 1−
∫ 1

0

ν(ν − 1)(1− u)ν−2L(u)du, ν > 1. (6)

If ν = 2 we obtain the Gini index. When ν increases, higher weights are attached to small incomes. We
want to find the probability distribution that maximize the entropy under following constraints:

∫∞
0
f(x)dx = 1∫∞

0
xf(x)dx = µ

Gν(f) = δ

(7)

Theorem 5.1. The survival function of entropy maximizer distribution subject to a given mean and a
given generalized Gini index is

F̄ (x) =

(
1

c1 exp(c2x) + (1− c1)

) 1
ν−1

, x ≥ 0, (8)

where c1 and c2 obtaine from constraints (7).

Proof. Using the definitions of Generalized Gini index (6) and Lorenz curve (5) we have

Gν(f) = 1− 1

µ

∫ 1

0

∫ p

0

ν(ν − 1)(1− p)ν−2F−1(t)dtdp

= 1− 1

µ

∫ 1

0

∫ 1

t

ν(ν − 1)(1− p)ν−2F−1(t)dpdt

= 1− 1

µ

∫ 1

0

ν(1− t)ν−1F−1(t)dt

= 1− 1

µ

∫ ∞

0

νxf(x)F̄ ν−1(x)dx

= 1− 1

µ

∫ ∞

0

F̄ ν(x)dx.

The maximization problem is to minimize the convex functional∫ ∞

0

f(x) ln f(x)dx,
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subject to constraints 
∫∞
0
f(x)dx = 1∫∞

0
xf(x)dx = µ∫∞

0
F̄ ν(x)dx = η

By theorem 2.1 and remark 2, the functional

L(f, λ) =

∫ ∞

0

f(x) ln f(x)dx+ λ1

∫ ∞

0

f(x)dx

+λ2

∫ ∞

0

xf(x)dx+ λ3

∫ ∞

0

F̄ ν(x)dx,

must satisfies the Euler’s equation (3). So we have

f ′(x)

f(x)
+ λ2 + λ3νF̄

ν−1(x) = 0

⇔ f ′(x) + λ2f(x) + λ3νf(x)F̄
ν−1(x) = 0

⇔ −F̄ ′′(x)− λ2F̄
′(x)− λ3

(
F̄ ν(x)

)′
= 0

⇔ F̄ ′(x) + λ2F̄ (x) + λ3F̄
ν(x) = c,

where c is a constant. Since F̄ (x) is a survival probability function c must be equal zero. Thus, we arrive
at the Bernoulli equation:

F̄ ′(x) + λ2F̄ (x) + λ3F̄
ν(x) = 0.

The solution of this equation is survival function in (9). Since target functional is convex and constraints
functionals are linear or convex, a global maximum is attained at the critical point F̄ (x).
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Abstract

We consider dynamic mutual information of lifetime distributions and study this measure for
bivariate past and residual lifetimes; some bounds are obtained and examples are given. We focus
also on dynamic mutual information for TTE and truncated TTE models. The mutual information
between the minimum and the maximum of order statistics is considered and a copula-based approach
for this measure is presented. In the second part some properties of a new measure of discrimination
obtained from Kullback-Leibler discrimination measure are described. A dynamic version of this
measure is also proposed, and it is applied to some concepts of relative aging. Finally, we provide an
application to image analysis.
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Abstract

In this paper, we study estimation of parameters based on survival functions. We consider equi-
librium distributions in Kullback-Leibler divergence and find a new measure of divergence. Then
we use this measure in parameter estimation. Some extensions in discrete, censor and real numbers
support cases also investigated.

Keywords: Censored data, Entropy, Estimation, Equilibrium distributions, Information measures.

1 Introduction

The Kullback-Leibler divergence or relative entropy is a measure of distance between two probability
distribution. If X and Y have probability density functions f and g respectively, the K-L divergence of
f relative to g is defined by

D (f ||g) =
∫
R

f (x) ln
f (x)

g (x)
dx.

D (f ||g) is always nonnegative and if f = g a.s., then D (f ||g) = 0.

Let f belongs to parametric family with k-dimensional parameter vector θ ∈ Θ ⊂ Rk and fn be kernel
density estimation of f . Lindsay (1994) used K-L divergence of fn relative to f as

D (fn||f) =
∫
fn (x) ln

fn (x)

f (x;θ)
dx, (1)

and defined minimum K-L divergence estimator of θ as

θ̂ = argmin
θ

D (fn (x) ||f (x;θ)) .

Many authors such as Morales et. al. (1995), Jiménz and Shao (2001), Broniatowski and Keziou
(2009), Broniatowski (2011) and Cherfi, M. (2011-a, b, 2012) studied properties of minimum K-L diver-
gence estimators.

Definition of D (fn||f) is based on f which in general may or may not exist, and fn which even if
the number of samples tends to infinity, there is no guarantee that converges to its true measure. So Liu
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(2007) proposed using F̄ instead of f and for guarantying that defined measure is nonnegative added a
term and defined K-L divergence of Survival functions F̄n and F̄ by

KLS
(
F̄n||F̄

)
=

∫ ∞

0

F̄n (x) ln
F̄n (x)

F̄ (x;θ)
−
[
F̄n (x)− F̄ (x;θ)

]
dx

=

∫ ∞

0

F̄n (x) ln F̄n (x) dx−
∫ ∞

0

F̄n (x) ln F̄ (x;θ) dx

− [x̄− E (X)] , (2)

where F̄n is empirical estimator of F̄ . Now if consider the parts of KLS
(
F̄n||F̄

)
that depend on θ and

define

g (θ) = E (X)−
∫ ∞

0

F̄n (x) ln F̄ (x;θ) dx, (3)

then minimum KLS estimator of θ defined as

θ̂ = argmin
θ

KLS
(
F̄n (x) ||F̄ (x;θ)

)
= argmin

θ
g (θ) .

Liu (2007) applied this estimator in uniform and exponential models and Yari and Saghafi (2012) and
Yari et. al. (2013) applied for estimating parameters of weibull distribution.

As mentioned above, Liu added term [x̄− E (X)] to guaranty D
(
F̄n||F̄

)
is nonnegative. Here we

consider another approach to aim this. We consider equilibrium distributions (Nair, 2013) instead of fn
and f in 1 as

f∗ (x) =
F̄ (x)

E (X)
, and f∗n (x) =

F̄n (x)

x̄
. (4)

In next section, we define K-L divergence based on equilibrium distributions and use it to estimate
parameters of distributions. Some extensions in discrete, censor and real numbers support cases also
investigated in following.

2 Main results

Using equilibrium distributions instead of fn and f , we define K-L divergence of equilibrium distributions
as follow.

Definition 1. Let F̄ (x;θ) be the true survival function with unknown parameters θ and F̄n (x) be the
empirical survival function of a random sample of size n from F (x;θ). Define the Kullback-Leibler
divergence of equilibrium distributions (KLE) by

KLE (Fn||F ) = D (f∗n||f∗)

=

∫ ∞

0

F̄n (x)

x̄
ln

F̄n (x) /x̄

F̄ (x;θ) /E (X)
dx

=
1

x̄

∫ ∞

0

F̄n (x) ln
F̄n (x)

F̄ (x;θ)
dx

− [ln x̄− lnE (X)] . (5)

Theorem 2.1. The introduced measure is non negative and as n tends to infinity, it converges to zero.

The KLE divergence is good enough for our purposes. Consider the parts ofKLE (Fn||F ) that depend
on θ and define

g∗ (θ) = lnE (X)− 1

x̄

∫ ∞

0

F̄n (x) ln F̄ (x;θ) dx. (6)

Now we define minimum KLE divergence estimator.
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Let
θ̂ = argmin

θ
KLE (Fn (x) ||F (x;θ)) = argmin

θ
g∗ (θ) .

Then, θ̂ called minimum KLE divergence estimator of θ.
Yari et. al. (2013) find a simple form of 3 as

g (θ) = E (X)− 1

n

n∑
i=1

h (xi) , (7)

where

h (x) =

∫ x

0

ln F̄ (y;θ) dy. (8)

So, comparing KLE (Fn||F ) in 5 with KLS
(
F̄n||F̄

)
in 2, we can write simple form of 6 as

g∗ (θ) = lnE (X)− 1

nx̄

n∑
i=1

h (xi) (9)

where h (x) is same as 8.

3 Some Extensions

In this section, we find some extensions minimum KLE divergence estimator. These are in discrete,
censor and real numbers support cases.

3.1 Discrete Case

Results is discrete case are straight forward of continuous case. Considering approach of Liu g (θ) is same
as 7 with

h (x) =

x−1∑
y=0

ln F̄ (y;θ) . (10)

So, in our approach g∗ (θ) is same as 9 with h (x) same as 10.

Example 2. Let {X1, . . . , Xn} be sequence of i.i.d. Geometric random variables with probability mass
function

P (X = x) = qxp, x = 0, 1, ... .

It can be showed that using Liu method we have

p̂ =

√
1 + 2

(
x2 + x

)
− 1

x2 + x
,

and using our method we have p̂ = 2x/
(
x2 + x

)
. So, it seems that our approach yields simpler estimator

than Liu’s one.

3.2 Censor Case

Let T1, ..., Tn be survival times that are i.i.d. nonnegative random variables from a c.d.f. F and survival
function Fn, and C1, ..., Cn be i.i.d. nonnegative random variables independent of Ti′s. In a variety of
applications in biostatistics and life-time testing, we are only able to observe the smaller of Ti and Ci
and an indicator of which variable is smaller:

Xi = min {Ti, Ci} , δi = I(0,Ci)(Ti), i = 1, ..., n.
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This is called a random censorship model and Ci′s are called censoring times. Let x(1) ≤···≤ x(n)
be ordered values of Xi′s and δ(i) be the δ-value associated with x(i). A maximum empirical likelihood

estimator (MELE) of F can be written as

F̄n(t) =
∏

X(i)≤t

(
1−

δ(i)

n− i+ 1

)
, (11)

which is the well-known Kaplan-Meier (1958) product-limit estimator (see Shao (2003) for more details).
If we consider F̄n in 11 instead of that one in 4, then considering Liu approach, after some algebra we
have

g (θ) = E (T )−
n∑
i=0

i∏
j=1

(
1−

δ(j)

n− j + 1

)[
h
(
x(i+1)

)
− h

(
x(i)
)]
,

and considering our approach we have

g∗ (θ) = lnE (T )− 1

x̄

n∑
i=0

i∏
j=1

(
1−

δ(j)

n− j + 1

)[
h
(
x(i+1)

)
− h

(
x(i)
)]
,

where h (x) is same as 8.

3.3 Real number support Case

When support of random variable is R, if E (X) ̸= 0 and x̄ ̸= 0 we define equilibrium distributions as

f∗ (x) =
F (x) I (x < 0) + F̄ (x) I (x ≥ 0)

E (X)
,

f∗n (x) =
Fn (x) I (x < 0) + F̄n (x) I (x < 0)

x̄
.

So, in our approach we find that

KLE (Fn||F ) =

∫ ∞

−∞
fn (x) ln

f∗n (x)

f∗ (x;θ)
dx

=
1

x̄

∫ 0

−∞
Fn (x) ln

Fn (x)

F (x;θ)
dx

+
1

x̄

∫ ∞

0

F̄n (x) ln
F̄n (x)

F̄ (x;θ)
dx− [ln x̄− lnE (X)] .

Now, the parts of KLE (Fn||F ) that depend on θ is

g∗ (θ) = lnE (X)− 1

x̄

∫ 0

−∞
Fn (x) lnF (x;θ) dx

− 1

x̄

∫ ∞

0

F̄n (x) ln F̄ (x;θ) dx. (12)

Now let in observed sample {x1, x2, ..., xn}, we observe k of them negative and n− k of them nonneg-
ative. After some algebra we can see that g∗ (θ) in 12 has the simple form as

g∗ (θ) = lnE (X)− 1

nx̄

k∑
i=1
xi<0

u (xi)−
1

nx̄

n∑
i=k+1
xi≥0

h (xi) , (13)

where h (x) is same as 8 and

u (x) =

∫ 0

x

ln F̄ (y;θ) dy. (14)
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If support be discrete, we have

g∗ (θ) = lnE (X)− 1

x̄

−1∑
−∞

Fn (x) lnF (x;θ)− 1

x̄

∞∑
0

F̄n (x) ln F̄ (x;θ) .

which has the simple form same as 13 with h (x) same as 10 and

u (x) =
−1∑
y=x

ln F̄ (y;θ) . (15)

Similarly, considering Liu approach we have

g (θ) = E (X)−
∫ 0

−∞
Fn (x) lnF (x;θ) dx−

∫ ∞

0

F̄n (x) ln F̄ (x;θ) dx, (16)

in continuous case and

g (θ) = E (X)−
−1∑
−∞

Fn (x) lnF (x;θ)−
∞∑
0

F̄n (x) ln F̄ (x;θ) , (17)

in discrete case, which both g (θ) in 16 and 17 have the simple form as

g (θ) = E (X)− 1

n

k∑
i=1
xi<0

u (xi)−
1

n

n∑
i=k+1
xi≥0

h (xi) ,

where depend on continuous or discrete case h (x) is same as 8 or 10, and u (x) is same as 14 or 15.

Example 3. Let {X1, . . . , Xn} be sequence of i.i.d. Normal random variables with probability density
function

ϕ
(
x;µ, σ2

)
=

1√
2πσ2

exp

(
−1

2

(
x− µ

σ

)2
)
, x ∈ R.

In this case, we see that h (x) , u (x) , g∗ (θ) and g∗ (θ) don’t have close form. But after derivation
g∗ (θ) respect to µ and setting zero we have

n

σ

x

µ
−

k∑
i=1
xi<0

lnΦ

(
xi − µ

σ

)
+

n∑
i=k+1
xi≥0

lnΦ

(
µ− xi
σ

)
+ k lnΦ

(
−µ
σ

)
− (n− k) lnΦ

(µ
σ

)
= 0, (18)

and after derivation g (θ) respect to µ and setting zero we have

n

σ
−

k∑
i=1
xi<0

lnΦ

(
xi − µ

σ

)
+

n∑
i=k+1
xi≥0

lnΦ

(
µ− xi
σ

)
+ k lnΦ

(
−µ
σ

)
− (n− k) lnΦ

(µ
σ

)
= 0. (19)

Also after derivation each one of g (θ) or g∗ (θ) respect to σ and setting zero we have

k∑
i=1
xi<0

∫ −µ
σ

xi−µ

σ

zϕ (z)

Φ (z)
dz −

n∑
i=k+1
xi≥0

∫ µ
σ

µ−xi
σ

zϕ (z)

Φ (z)
dz = 0. (20)

Here we see that 20 is same in both approach, and also see that 18 and 19 are just different is term
x
µ which tends to 1 as n tends to infinity. So in this case estimators are near to each other.
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Example 4. Let {X1, . . . , Xn} be sequence of i.i.d. Pareto random variables with probability density
function

ϕ (x;α, β) =
αβα

xα+1
, x ≥ β, α > 0, β > 0.

So after some algebra,we have

g∗ (α, β) = lnα+ lnβ − ln (α− 1) +
αx lnx

x
− α (lnβ + 1) +

αβ

x
,

and

g (α, β) =
αβ

α− 1
+ αx lnx− αx (lnβ + 1) + αβ.

It can be shown that after derivation each one of g (α, β) or g∗ (α, β) respect to α and β and setting
zero we have

lnα− ln (α− 1)− 1

α− 1
+
x lnx

x
− lnx = 0, (21)

and

β =
x (α− 1)

α
. (22)

Here we see that 21 and 22 are same in both approach. So in this case estimators are same as each
other.
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The extension of notion for the measure of information with application in communication theory
back to the experiences of the C. E. Shannon during the second World War II. In 1948, he introduced that
the entropy is a real number associated with a random variable which is equal to the expected value of the
surprise that we would receive upon getting a realization of the random variable. Let, Sa(p) = − loga p
(base-2 is often used) be the measure of surprise we feel when an event with the probability p is occurring
actually occurs. Then, entropy for a random variable is calculated using the probability mass (or pdf)
function of the random variable via Ha(X) = E[Sa(p(X))]. Some of the properties and characterizations
of the Shannon entropy and its extension versions are mentioned here.
Also, finding expressions for the multivariate distributions (discrete or continuous) and information mea-
sure such as mutual information with some of their properties and discussing in view of copula are
reviewed.

The principle of maximum entropy provides a method to select the unknown pdf (or pmf) compatible
to entropy under a specified constraint. This idea was introduced by Jaynes 1957 and obtained via a
theorem by Kagan et al. (1973). Applying to maximum Renyi or Tsallis entropy and also ϕ−entropy, as
a general format subsume many special cases. Similar arguments are applicable to a multivariate set-up.

In probability theory and information theory, the Kullback Leibler divergence (also information di-
vergence, information gain, relative entropy) is a non-symmetric measure of the difference between two
probability distributions. Specifically, the Kullback Leibler divergence is typically represents the ”true”
distribution of data and a theoretical model for approximation of the true distribution. Although it
is often intuited as a metric or distance, the KL divergence is not a true metric. Various applications
in statistics and properties of it is one of our aim in here. The link between maximum likelihood and
maximum entropy and Kullback Leibler information is important for a discussion which is coming in
this note. There are several types of information divergence measure that are studied in literature as
extensions of the Shannon entropy and Kullback Leibler information. Some of them can be collected in
Csiszar ϕ−divergence as special cases. So, minimization of them is important and finding these optimal
measures is the other direction that is discussed in this paper with the related special states such as Kull-
back Leibler information, χ2-divergence, total variation, squared perimeter distance, Renyi divergence,
Hellinger distance, directed divergence and so on.

Keywords: Entropy, Maximum entropy, Kullback Leibler information, Information measures, Mini-
mization of Kullback Leibler information.
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A measure of relative entropy rate between two stochastic
processes with an application in speech recognition
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Abstract

In this paper, we study the relative entropy rate between a homogeneous Markov chain and a
hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is
the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative
entropy between two finite subsequences of above mentioned chains and define the relative entropy
rate between these stochastic processes, then calculate the maximum of the relative entropy rate by
the concept of convexity and study the convergence of it.

Keywords: Relative entropy rate, Mutual information, Stochastic channel, Markov chain, Hidden
Markov chain.

Introduction

Suppose {Xn}n∈N is a homogeneous stationary Markov chain with finite state space S = {0, 1, 2, ..., N−1}
and {Yn}n∈N is a hidden Markov chain (HMC) which is observed through a discrete stochastic channel
where the input of channel is the Markov chain. The output state space of channel is characterized by
channel’s statistical properties. From now on we study the channels state spaces which have been equal
to the state spaces of input chains.

Let P = {pab} be the one-step transition probability matrix of the Markov chain such that pab =
Pr{Xn = b|Xn−1 = a} for a, b ∈ S and Q = {qab} be the noisy matrix of channel where qab = Pr{Yn =
b|Xn = a} for a, b ∈ S. Also the initial distribution of the Markov chain is denoted by the vector Π0

such that Π0(i) = Pr{X0 = i} for i ∈ S.
At the rest of this paper we try to obtain the relative entropy and mutual information between two

finite subsequences X1, X2, ..., Xn and Y1, Y2, ..., Yn and to define the relative entropy rate and mutual
information rate between a Markov chain and its corresponding hidden Markov chain. From now on Xn

1

denotes the subsequence X1, X2, ..., Xn for simplicity.
Relative entropy was first defined by Kullback and Leibler [8]. It is known under a variety of names,

including the Kullback-Leibler distance, cross entropy, information divergence, and information for dis-
crimination, and it has been studied in detail by Csiszar [6] and Amari [1]. The relative entropy between
two random variables is developed to two sequences of variables and it is used for comparing two stochas-
tic processes. Kesidis and Walrand derived the relative entropy between two Markov transition rate
matrices [7]. Chazottes, Giardina and Redig [4] applied it for comparing two Markov chains.
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Hidden Markov processes (HMP)s were introduced in full generality in 1966 by Baum and Petrie
[2] who referred to them as probabilistic functions of Markov chains. Indeed, the observation sequence
depends probabilistically on the Markov chain. During 1966-1969, Baum and Petrie studied statisti-
cal properties of stationary ergodic finite-state space HMPs. They developed an ergodic theorem for
almost-sure convergence of the relative entropy density of one HMP with respect to another. In 1970,
Baum, Petrie, Soules and Weiss developed forward-backward recursions for calculating the conditional
probability of a state given an observation sequence from a general HMP [3].

In this paper the relative entropy rate between a Markov chain and a HMC is studied. It is possible
by considering properties of channel to have many hidden Markov chains respecting a Markov chain.
So conditions of the system whose works are based on the hidden Markov models will be controlled by
noting the relative entropy rate. Section 1 includes some required preliminaries and definitions. Section
2 discusses the existance and convergence of the relative entropy rate, by maximum of it wich obtain by
the mutual information rate. At last in section 3 we show that relative entropy rate has an application
in speech recognition.

1 Preliminaries

In probability theory, entropy and mutual information are introduced by Shannon [9]. The entropy of a
random variable X by distribution PX taking values from a finite set E is defined by him as

H(X) = −EX logP (X) = −
∑
i∈E

PX(i) logPX(i), (1)

with the convention 0 log 0 = 0. Consider two random variables X and Y with joint distribution
PX,Y (x, y). The entropy of these variables is

H(X,Y ) = −EX,Y logPX,Y (X,Y )

= −
∑
i∈E

∑
j∈E

PX,Y (i, j) logPX,Y (i, j). (2)

Also the conditional entropy could be defined as

H(X|Y ) = −EX,Y logPX|Y (X|Y )

= −
∑
i∈E

∑
j∈E

PX,Y (i, j) logPX|Y (i|j).
(3)

In statistics, the relative entropy arises as an expected logarithm of the likelihood ratio of the distri-
bution probability functions of these variables i.e.

D(PX ||PY ) = EX log
PX(X)

PY (X)

=
∑
i∈E

PX(i) log
PX(i)

PY (i)
.

(4)

Corollary 1. Two variables X and Y are identical distribution if and only if D(PX ||PY ) = 0.

For relative entropy, one can write

D(PX1,X2 ||PY1,Y2) = D(PX1 ||PY1) +D(PX2|X1
||PY2|Y1

). (5)

Proof. [5] pages 24-25.
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This equation is known as the chain rule for relative entropy. The mutual information I(X;Y ) is the
relative entropy between the joint distribution PX,Y (x, y) and the product distribution PX(x)PY (y), i.e.,

I(X;Y ) = D(PX,Y ||PXPY )

=
∑
i∈E

∑
j∈E

PX,Y (i, j) log
PX,Y (i, j)

PX(i)PY (j)
.

(6)

We can rewrite the definition of mutual information as

I(X;Y ) = H(X)−H(X|Y ), (7)

and the chain rule for mutual information is

I(Xn
1 ;Y ) =

n∑
i=1

I(Xi;Y |Xi−1
1 ). (8)

Lemma 1.1. For any two random variables, X and Y ,

I(X;Y ) ≥ 0, (9)

whit equality if and only if X and Y are independent.

Proof. [5], Page 30.

2 Existence of the relative entropy rate

The relative entropy rate between two stochastic processes {Xn}n∈N and {Yn}n∈N defined in [10] as

D(X||Y) := lim
n→∞

1

Nn
D(PXn

1
||PY n

1
), (10)

where S = {0, 1, 2, ..., N − 1}.
Consider qij =

1

N
for any 0 ≤ i, j ≤ N − 1. The Mutual informatin Xi and Yi is,

I(Xi;Yi) = H(Yi)−H(Yi|Xi)

=
N−1∑
x=0

N−1∑
y=0

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)

= 0.

(11)

Because

PX,Y (x, y) = PY |X(y|x)PX(x) =
1

N
PX(x) (12)

and

PY (y) =
N−1∑
x=0

PX,Y (x, y) =
N−1∑
x=0

1

N
PX(x) =

1

N
, (13)

so PX,Y (x, y) = PX(x)PY (y). By lemma 2.1 Xi and Yi is independent for any 0 ≤ i ≤ N − 1.

Lemma 2.1. Let (X,Y ) ∼ P (x, y) = p(x)p(y|x). The mutual information I(X;Y ) is a concave function
of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x). D(p||q) is convex in the pair (p, q).

Proof. [5], Pages 32 and 33.
p(y|x) is constant and equals to 1

N , so I(X;Y ) is concave with minimum value and D(p||q) is convex.
Decreasing of mutual information will result increasing of relative entropy. For obtaining the maximum
value of the relative entropy rate, we have
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PYi|Y i−1
1

(si|si−1
1 ) =

∑
xi
1∈Si

PYn|Y i−1
1 ,Xi

1
(si|si−1

1 , xi1)PXi
1
(xi1)

=
∑
xi
1∈Si

PYi|Xi
(si|xi)PXi

1
(xi1)

=
∑
xi
1∈Si

1

N
PXi

1
(xi1) =

1

N
.

(14)

Where entries of Q are equal to 1
N , the relative entropy rate of X and Y is maximum. We replace

PYn|Y n−1
1

in definition of D(PXn
1
||PY n

1
) by 1

N , so we can obtain D̄(PXn
1
||PY n

1
) as,

D̄(PXn
1
||PY n

1
) = D̄(PXn−1

1
||PY n−1

1
) +

∑
sn1∈Sn

PXn|Xn−1
(sn|sn−1) logN

+
∑
sn1 ∈Sn

PXn|Xn−1
(sn|sn−1) logPXn|Xn−1

(sn|sn−1)

= D̄(PXn−1
1

||PY n−1
1

) +Nn−1 logN

+Nn−2
∑
s21∈S2

PX2|X1
(s2|s1) logPX2|X1

(s2|s1).

(15)

Know that D̄(PXn
1
||PY n

1
) is the maximum ofD(PXn

1
||PY n

1
). Let α = N logN+

∑
s21∈S2

PX2|X1
(s2|s1) logPX2|X1

(s2|s1)

for simplicity. So
D̄(PXn

1
||PY n

1
) = D̄(PXn−1

1
||PY n−1

1
) +Nn−2α

= D̄(PXn−2
1

||PY n−2
1

) + (Nn−2 +Nn−3)α
...

= D̄(PX1 ||PY1) +

n∑
i=2

Nn−iα

= D̄(PX1 ||PY1) +
Nn−1 − 1

N − 1
α.

(16)

By noting the definition of the relative entropy rate in (10), we can write

1

Nn
D̄(PXn

1
||PY n

1
) =

1

Nn
D̄(PX1 ||PY1) +

Nn−1 − 1

Nn(N − 1)
α. (17)

We know
1

Nn
D̄(PXn

1
||PY n

1
) is increasing with respect to n, for every arbitrary matrices P and Q. Also

for every arbitrary matrix P, the relation
1

Nn
D(PXn

1
||PY n

1
) is maximum for matrix Q with entries

qx,y = N−1. The amount of this maximum is
1

Nn
D̄(PXn

1
||PY n

1
) in (17). So D(X||Y) is well defined. α is

depend on matrix P so we can get

sup
Q

{D(X||Y)} = D̄(X||Y), (18)

where

D̄(X||Y) = lim
n→∞

1

|S|n
D̄(PXn

1
||PY n

1
) =

α

N(N − 1)
. (19)

3 Application

In visual speech recognition, the deaf viewers do not hear the speaker but just see the lip movements.
So they should try to guess the speaker’s words based on their past experience. Here, uttering the words
randomly ends in a Markov chain and seeing the speaker’s lip movements seeing is like a stochastic channel,
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the output of which is a sequence of words guessed by the deaf with the risk of wrongly recognizing the
words. This output sequence is a hidden Markov chain.

Consider the following test: six Persian words ”one, two, three, four, five and six” are expected to be
recognized. 20 persons were asked to repeat each of them 10 times. In other words, each word would
be repeated 200 times. Their lip movements were filmed, which makes it possible to identify the uttered
words by different methods.

For any hidden Markov chain model, we need the following elements:
i) The initial distribution vector
ii)Propapility transition matrix
iii)noisy matrix

Suppose that Table17 contains the number of diagnoses of words.

Table 17: The number of observations, true or false

one two three four five six

one 154 1 38 1 4 0
two 0 194 0 4 0 2
three 39 0 155 0 1 1
four 2 3 3 185 4 3
five 4 0 1 3 188 2
six 1 2 3 7 3 192

Now due to the hidden Markov model elements to Table17, we have:

P = 1
6

 1 · · · 1
...

. . .
...

1 · · · 1

 , Q = 1
200

 154 · · · 1
...

. . .
...

0 · · · 192

 (20)

and π0 = 1
6 [1 1 1 1 1 1]. Similarly, these matrices can be obtained for each table, which contains the

results of experiments with different methods.
The relative entropy between a Markov chain and its corresponding hidden Markov chain in this

model for some sequence with size n, is calculated and presented in Table18.

Table 18: The relative entropy for n=3 to 10

n D(Xn
1 ||Y n

1 ) n D(Xn
1 ||Y n

1 )

3 0.3685 7 0.3872
4 0.3793 8 0.3879
5 0.3831 9 0.3884
6 0.3856 10 0.3886

The sequence of numbers in Table 2 is Convergent. The value of the limit of this sequence is equal to
the relative entropy. (It should be noted that the speed of convergence of this sequence is so high, that
up to 3 decimal places is sufficient to get its value of the limit n = 10.)

We know that the relative entropy is the measure of the distance between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio. The relative entropy D(pX ||pY ) is the
measure of the inefficiency of assuming that the distribution is pY when the true distribution is pX . So
it can be used to compare different ways of recognizing the visual speech. Suppose that, the sequential
speaker’s words of the speaker which form a stochastic Markov process can be recognized by two or more
different methods in terms of the speaker’s lip movements.

In each of these methods, the recognized sequence of words is a hidden Markov process. The rate of
relative entropy between these two processes is a measure of distance between them. So a reduction in
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relative entropy indicates how close the uttered word and speakers identification are. Usually, the amount
of efficiency is calculated by dividing the number of correct diagnoses on the number of total occurrences
of words. This value is obtained 0.89 by the data of Table 1. Since, these values are directly associated
with the word and the movement of the speaker’s lips, it will be changed by the change of words. On the
other hand, if the efficiency of these two methods is equal, how should the methods be selected? Due to
the dependency of the relative entropy only to the probability (values) and not to the words, it would be
better to use this value for determining the effectiveness of the method. The lower the relative entropy
rate is, the more efficient the method is.
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Abstract

Entropy of engineering systems, as a measure of uncertainty, has been studied in statistical and
reliability literature. In this paper, we provide an expression for the entropy of a coherent system
lifetime by using the concept of minimal signature when lifetimes of components are independent
and identically distributed. We also obtain bounds for the entropy of system lifetime in terms of the
entropy of component lifetimes. It is shown that bounds are very useful when the system has a large
number of components or the configuration of the system is complicated. Some examples are also
given.

Keywords: Bridge system, Coherent system, KL information, k-out-of-n system, Minimal signa-
ture.

1 Introduction

Coherent systems have widely been used in various areas of engineering reliability. For the definition and
basic properties of coherent systems, we refer the reader to Barlow and Proschan [1]. The performance
of a system’s design and the lifetime of the system are of interest and may be measured in a variety of
ways. In the recent decades, a very useful measure is the notion of system signature successfully applied
to compute the system characteristics. The system signature is the n-dimensional probability vector
s = (s1, · · · , sn) whose the ith element is si = P (T = Xi:n), where T denotes the system lifetime and
Xi:n is the order statistics of n independent and identically distributed (i.i.d.) component lifetimes, see,
e.g., Samaniego [9]. Hereafter, we consider a coherent system consisting of n i.i.d. components with
lifetimes X1, · · · , Xn having the common cumulative distribution function (cdf) F which is absolutely
continuous with a probability density function (pdf) f . We denote the system lifetime by T and the pdfs of
the order statistics associated to component lifetimes i.e. X1:n, · · · , Xn:n, by f1:n, · · · , fn:n, respectively.
It follows that (see, e.g., Samaniego [10])

F̄T (t) = P (T > t) =

n∑
i=1

siF̄i:n(t), t > 0, (1)

where F̄i:n(t) = 1− Fi:n(t) is the survival function of Xi:n. From (1), the pdf of T can be written as

fT (t) =
n∑
i=1

sifi:n(t), (2)



50 The 2nd Workshop on Information Measures and their Applications

where

fi:n(t) = i

(
n

i

)
[F (t)]i−1[F̄ (t)]n−if(t), t > 0. (3)

The probability vector s = (s1, · · · , sn) is called the signature of the coherent system. Equation (2)
can be found as a weighted combination of the k-out-of-n systems which fails due to failure of the k-
th component. Another useful representation for (1) when the components are are exchangeable, i.e.
F (x1, · · · , xn) = P (X1 ≤ x1, · · · , Xn ≤ xn) = F (xπ1 , · · · , xπn) for any permutation π = (π1, · · · , πn) of
the indices {1, · · · , n}, is

F̄T (t) =
n∑
i=1

aiF̄1:i(t), t > 0. (4)

The vector a = (a1, · · · , an) is called minimal signature (see, e.g., Navvaro et al., [6]). Specifically, when
lifetimes of components are i.i.d., Expression (4) yields

F̄T (t) =

n∑
i=1

ai[F̄ (t)]
i, t > 0, (5)

and hence

fT (t) =

n∑
i=1

iai[F̄ (t)]
i−1f(t). (6)

In this paper, we provide an expression for the entropy of coherent system lifetime by using the
concept of minimal signature. The Shannon [11] entropy is a measure of uncertainty and predictability
of the random variable X. If X is an absolutely continuous nonnegative random variable with the pdf
f , then X may be viewed as the random lifetime of a system or a component or a living organism. The
Shannon entropy of X is defined by

H(X) = H(f) = −
∫ ∞

0

f(x) log(f(x))dx. (7)

Throughout this paper, “log” will denote the natural logarithm. The index H(f) measures the uniformity
of a distribution function. Another measure of uncertainty of two distributions is well-known Kullback-
Leibler (KL) discrimination information of random variables X and Y with pdfs f and g, respectively,
defined by

K(f : g) =

∫ ∞

0

f(x) log
f(x)

g(x)
dx

= −H(f) +H(f, g), (8)

where H(f, g) = −Ef [log g(X)] is known as Fraser information (see, e.g., Ebrahimi et al. [2]). The KL
discrimination information is always nonnegative. Note that K(f : g) = 0 if and only if f(x) = g(x)
almost everywhere. The KL information was first introduced by Kunllback and Leibler [4] to measure of
the distance between two distributions.

Studying of the entropy of engineering systems has been studied in statistical and reliability literature,
see, e.g., Ebrahimi et al. [5], Wong and Chen [14], Park [8] and Toomaj and Doostparast [12, 13]. Toomaj
and Doostparat [12, 13] studied the entropy of the lifetime of the coherent system as well as the KL dis-
crimination of coherent systems lifetime. They obtained several results about the information properties
of coherent systems by using the concept of system signature. Specially, they proposed an order to choose
a preferable system among two coherent systems.
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2 Expression and bounds for H(T )

Consider a coherent system with lifetime T and the minimal signature vector a = (a1, · · · , an) consists n
i.i.d. components with lifetimesX1, · · · , Xn having the common cdf F . It is known that the corresponding
transformations of component lifetimes are i.i.d. random variables Ui = F (Xi) which are uniformly
distributed on [0, 1] i.e. Ui ∼ U [0, 1]. Also the random variables Wi = F (X1:i) has the beta distribution
with parameters 1 and i, i.e. Wi ∼ B(1, i). It is well known that the pdf of Wi is given by

gi(w) = i(1− w)i−1, 0 < w < 1, i = 1, · · · , n. (9)

The entropy of coherent system lifetime is found by using the transformation V = F (T ). The PDF
of V = F (T ) is gV (v) =

∑n
i=1 sigi(v) so that the Jacobian of the transformation for T = F−1(V ) is

1/f(F−1(v)). Applying T = F−1(V ) the transformation formula for the system’s entropy, the following
useful representation for the coherent system lifetime can be derived

H(T ) = H(V )− E[log f(F−1(V ))],

= H(V )−
n∑
i=1

aiE[log f(F−1(V ))], (10)

where H(V ) is the entropy of a coherent system with lifetime V and minimal signature a consisting of n
i.i.d. component lifetimes follow the standard uniform distribution. Expression (10) is useful to develop
various results about the entropy of coherent system’s lifetime. When the number of components is large
or the structure of the system is complicated, evaluating of H(V ) is not easy in such situations. Note that
this is a common situations in practice. The bounds are very useful in these cases. In the forthcoming
theorem, we use the mentioned earlier results to provide bounds for H(T ) in terms of the entropy of the
component lifetime. First, we have the following lemma.

Lemma 2.1. If V denotes the lifetime of the coherent system consisting of n possibly i.i.d. component
lifetimes having the common marginal standard uniform distribution, then

− log sup
0<v<1

gV (v) ≤ H(V ) ≤ 0. (11)

Proof. Let T be the lifetime of the coherent system consisting of n i.i.d. component lifetimes having the
common marginal pdf f and cdf F . By applying transformations U = F (X) and V = F (T ), we have

K(fT : f) = K(gV : U) =

∫ 1

0

gV (v) log gV (v)dv,

= −H(V ) ≥ 0.

The first equality follows from the invariant property of the KL discrimination information under one-
to-one transformations U = F (X) and V = F (T ) and this derive the upper bound. To obtain the lower
bound, since gV (v) ≤ sup0<v<1 gV (v), we have

H(V ) ≥ − log sup
0<v<1

gV (v)

∫ 1

0

gV (v)dv = − log sup
0<v<1

gV (v),

and the desired result follows. □

Theorem 2.2. Let T denote the lifetime of the coherent system with minimal signature a consisting of
n i.i.d. component lifetimes having the common cdf F .
(a) By noting that H(X) <∞, we have

H(T ) ≥ − log sup
0<v<1

gV (v) + sup
v∈(0,1)

gV (v)[H(X) + I(A)], (12)

H(T ) ≤ sup
v∈(0,1)

gV (v)[H(X) + I(Ā)], (13)
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where A = {x : f(x) ≤ 1}, Ā = {x : f(x) > 1} and

I(A) =

∫
A

f(x) log f(x)dx.

(b) Suppose M = f(m) < ∞, where m = sup{x : f(x) ≤ M} is the mode of the distribution and
H(X) <∞. Then

H(T ) ≥ −[log sup
0<v<1

gV (v) + logM ], (14)

H(T ) ≤ − logM + sup
v∈(0,1)

gV (v)[H(X) + logM ]. (15)

Proof. (a) From (10), we have

−E[log f(F−1(V ))] = −
∫
A1

gV (v) log f(F
−1(v))dv (16)

−
∫
Ā1

gV (v) log f(F
−1(v))dv (17)

≤ −
∫
A1

gV (v) log f(F
−1(v))dv

≤ sup
v∈(0,1)

gV (v)

[
−
∫
A1

log f(F−1(v))dv

]
= sup

v∈(0,1)

gV (v)

[
−
∫
A

f(x) log f(x)dx

]
= sup

v∈(0,1)

gV (v)

[
H(X) +

∫
Ā

f(x) log f(x)dx

]
,

(18)

where
A1 = {v : f(F−1(v)) ≤ 1}, Ā1 = {v : f(F−1(v)) > 1}.

The first inequality in (18) is obtained by the fact that the integrate in (17) is nonnegative and the second
inequality obtained by noting that gV (v) ≤ supv∈(0,1) gV (v), ∀ v ∈ (0, 1). By using equations (10), (11)
and (18), the desired result in (13) follows. The lower bound in (12) can be obtained by using equations
(10) and (11) and the fact that the integrate in (16) is nonpositive.

(b) Let us consider a coherent system with lifetime Y = MT consisting of n i.i.d. components with
lifetimes Z1, · · · , Zn where Zi = MXi, i = 1, · · · , n. Since fZ(z) = 1

M f( zm ) ≤ 1, for all z > 0, hence
I(A) = −H(Z) and I(Ā) = 0. From Part (a), we have

− log sup
0<v<1

gV (v) ≤ H(Y ) ≤ sup
v∈(0,1)

gV (v)H(Z).

By noting that H(Z) = H(X)+ logM and H(Y ) = H(T )+ logM , the desired result in Part (b) follows.
□

As an application of the obtained bounds in Equations (12)-(14), consider the following example.

Example 5. Let us consider the bridge system with lifetime T and the minimal signature a = (0, 2, 2,−5, 2)
consisting of n = 5 i.i.d. component lifetimes having the common CDF F . It is not hard to verify that

sup
v∈(0,1)

gV (v) = gV (
1

2
) = 1.625.

(i) Let X follow a uniform distribution on [0,b]. It is known that M = b−1 and H(X) = log b, hence
Part (b) implies

−0.4855078 + log b ≤ H(T ) ≤ log b.
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(ii) If X has the exponential distribution with mean 1/λ, then we have M = λ and H(X) = 1 − log λ.
The entropy of the system’s lifetime is bounded as follows:

−[0.4855078 + log λ] ≤ H(T ) ≤ 1.625− log λ.

(iii) Suppose that X has the Parto distribution type II with the following pdf

f(x) = α(1 + x)−(α+1), x ≥ 0, α > 0.

It is easy to see that M = α and H(X) = α−1 − logα+ 1. Therefore Part (b) yields

−[0.4855078 + logα] ≤ H(T ) ≤ − logα+ 1.625(1 + α−1).

□
The bounds in Theorem 2.2 are useful when the probability distribution does not have a closed

form, and hence the density function gV (v) cannot be easily evaluated. Explicit expressions for many
well-known distributions are available, and then the evaluation of proposed bounds in Theorem 2.2 are
numerically simple.
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Abstract

In this paper, we study maximum entropy approach in terms of Shannon entropy and entropy of
equilibrium distribution, known as cumulative residual entropy (CRE). In classical maximum entropy
approach the model whose uncertainty is maximum in a set of distributions, under some constraints
(usually moments constraints), selected as the maximum entropy model. We present maximum en-
tropy of equilibrium distribution model, under some partial ordering in well known family of lifetime
distributions.

Keywords: Uncertainty, Cumulative Residual Entropy, Equilibrium Distribution, Partial Order-
ing, Maximum Entropy.

1 Introduction

Let X be a nonnegative absolutely continuous random variable with distribution function F and prob-
ability density function f , respectively. Shannon (1948) introduced a measure of uncertainty based on
probability mass function for discrete random variables. Differential entropy as a well-known measure of
uncertainty in the continuous case is defined as

H(f) = −
∫ ∞

0

f(x)logf(x)dx,

Rao et al. (2004) introduced CRE for nonnegative random variables based on cumulative distribution
function as

ε(F ) = −
∫ ∞

0

F (x)logF (x)dx,

where F = 1 − F is survival function.CRE has many interesting applications in different branches of
sciences such as reliability theory, survival analysis, computer vision, image processing and etc.

Asadi and Zohrevand (2007) showed that CRE is equal to expectation of mean residual life function
and introduced the dynamic version of CRE (DCRE).

ε(X) = −
∫ ∞

0

F (x)logF (x)dx = E[mF (X)],

where mF (x) is mean residual life function of distribution F .
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A relationship between H(f) and ε(F ) can be drown via Shannon entropy of equilibrium distribution
(ED). Let X be a r.v. with survival function F̄ (x) and µ = E(X) <∞. Then the PDF of ED is

fe(x) =
F̄ (x)

µ
,

hence easily can see

H(fe) =
ε(F )

µ
+ logµ.

Several applications and properties of CRE and DCRE have studied by many researchers such as Rao
(2005), Zografos and Nadarajah (2005), Di Crescenzo and Longobardi(2009),(2011), Navarro et al. (2010),
Longobardi (2014) and Zardasht et al. (2014).

In the rest of paper, we study CRE ordering under some well known partial ordering and present the
concept of maximum entropy of ED of distributions.

2 Ordering of CRE and Maximum Equilibrium Distributions
Entropy

Definition 2. Let ΩF be a set of nonnegative absolutely continuous distributions with some constraints
on F ,s. If F ∗ ∈ ΩF be such that for all F ∈ ΩF

ε(F ) ≤ ε(F ∗),

then F ∗ is maximum ED entropy (MEDE) in ΩF .

Usually in procedure of generating maximum entropy (ME) models, in main approach, it is set some
moment constraints on distributions. In lifetime studies, there exist situations in which hazard rate (HR)
function or mean residual life (MRL) function satisfy some conditions. Ebrahimi (2000) studied the ME
models under these conditions. Asadi et al. (2004) investigated ME models for residual lifetime in terms
of HR order with monotone PDF. They stated constraints based on differential equations on HR and
MRL functions. Asadi et al. (2014) presented a general exponential form of MEDE models under some
moment constraints which is similar to ME models.

In present paper we investigate MEDE and ME models under some partial ordering as the constraints
on distributions.

Definition 3. Let X and Y be two nonnegative absolutely continuous r.v. with survival functions F̄
and Ḡ, mean residual lives mF and mG and hazard functions rF and rG, respectively. There is several
ordering of distributions based on these functions.

(a) X is said to be smaller than Y in stochastic order, denoted by X ≤st Y , if F̄ (t) ≤ Ḡ(t) for all
t > 0.

(b) X is said to be smaller than Y in mean residual life order, denoted by X ≤mrl Y , if mF (t) ≤
mG(t) for all t > 0.

(c) X is said to be smaller than Y in hzard order, denoted by X ≤hr Y , if rF (t) ≥ rG(t) for all t > 0.
(d) X is said to be smaller than Y in likelihood ratio order, denoted by X ≤lr Y , if for all t > 0,

g(t)
f(t) be increasing in t.

(e) X is said to be smaller than Y in convex order, denoted by X ≤cx Y , if for all convex function
ϕ, E(ϕ(X)) ≤ E(ϕ(Y )).

In following theorems we present MEDE and ME models under some conditions. Before this aim, we
have to state an useful lemma of Ebrahimi et al. [5].

Lemma 2.1. Suppose F and G be two probability distribution functions with survival functions F̄ and Ḡ
respectively. Let F is absolutely continuous relative to G (F ≺≺ G), and F̄ (t) ≤ Ḡ(t) for all t > 0, if the
pdf of g is decreasing (increasing), then H(f) ≤ (≥)H(g).
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Theorem 2.2. Let ΩF={F : rF (t) ≥ rG(t) for all t > 0 and F ≺≺ G } be a set of nonnegative absolutely
continuous distributions. Then F ∗ = G is the MEDE in ΩF .

Proof: Suppose X ≤hr Y , from Theorem 1.C.13 of [6] we have Xe ≤lr Ye, where Xe, Ye have
decreasing equilibrium density function related to X and Y respectively. So Xe ≤lr Ye implies Xe ≤hr Ye
and Xe ≤st Ye. Also, one can see if X is absolutely continuous with respect to Y (F ≺≺ G) then for the
related equilibrium distributions we have, Xe is absolutely continuous with respect to Ye (also Fe ≺≺ F ,
Ge ≺≺ G). Finally from Lemma 2.1, we have H(fe) ≤ H(ge), in other word G is MEDE model in ΩF .

Corollary 1. In Theorem 2.2, if the pdf g is decreasing then G also is ME model in ΩF . For example,
in decreasing failure rate (DFR) family of distributions this property hold.

Example 6. A useful and applicable family of distributions in survival analysis and reliability theory is
the family of proportional hazard models. Let ΩF={F : rF (t) = c.rG(t) for all c > 1 and t > 0 }. If
F ≺≺ G, then the conditions of Theorem 2.2 can hold in this set of distributions and G is MEDE in ΩF .
Note that if g, the PDF of G, is decreasing then G also is ME in ΩF .

Theorem 2.3. Let ΩF={F : mF (t) ≤ mG(t) for all t > 0 and F ≺≺ G } be a set of nonnegative
absolutely continuous distributions. Then F ∗ = G is the MEDE in ΩF if the expectations of F and G are
exist and finite.

Proof: From Theorem 2.A.4 of [6], we have X ≤mrl Y if, and only if Xe ≤hr Ye, and this implies
Xe ≤st Ye. As in ΩF , F ≺≺ G, then Fe ≺≺ Ge and from Lemma 2.1 and the fact that ge(t) is decreasing,
one can conclude that G is MEDE model in ΩF .

Corollary 2. In Theorem 2.3, if the pdf g be decreasing and log-concave, then G also is MDE in ΩF .

Proof: See the Corollary 1 of Asadi et al.[2].

Example 7. Another well-known family of distributions in survival analysis and reliability theory is the
proportional mean residual life distributions. Let ΩF={F : mF (t) = c.mG(t) for all 0 < c < 1 , t > 0
and µG <∞ }. Then from Theorem 2.3 for all 0 < c < 1, G is MEDE in ΩF .

If the distributions F and reference distribution G in Lemma 2.1 are selected suitably, especially in
mixtures family and weighted distributions family, then one can generate ME and MEDE models in these
classes of distributions using above theorems.

Corollary 3. Suppose G as a reference distribution, be a nonnegative absolutely continuous distribution
and ΩF = {F : F ≤hr G and F ≺≺ G}. Let H(x) = pF (x) + (1 − p)G(x) for some p ∈ (0, 1), be a
mixture of F’s and G, then G is MEDE in ΩF . Also if the pdf h, be decreasing then G is ME for all
F,H ∈ ΩF .

Proof: If X ≤hr Y and W is a r.v. with distribution H. Then from Theorem 1.B.22 of [6], we have
X ≤hr W ≤hr Y , and this implies X ≤st W ≤st Y . Also, if F ≺≺ G, it is easy to show that H ≺≺ G. As
the conditions of Lemma 2.1 hold for all F,H ∈ ΩF , hence using the fact that ge and he are decreasing,
G is MEDE in ΩF .

Corollary 4. Let X and Y are two nonnegative absolutely continuous random variables with distributions

F and G respectively and F ≺≺ G. Let fw(x) =
w(x)

E(w(X))f(x) and gw(x) =
w(x)

E(w(Y ))g(x) be the weighted

PDF of r.v. X and Y with finite E[w(Y )] and E[w(X)] respectively. If w(x) is increasing and X ≤hr Y
then Xw ≤hr Y w. Also easily can see rY w(x) = w(x)

E(w(Y )|Y >x) .rY (x), hence as w(t) is increasing we have

w(t) ≤ E(w(Y )|Y > t), for all t > 0 then Y w ≤hr Y (see example 1.B.23 of [6]). From Theorem 2.2, G
is MEDE in the set of distributions fw’s and gw’s which satisfy above conditions.

Theorem 2.4. Suppose ΩF={F : X ≤cx Y and µ = E(Y ) < ∞, F ≺≺ G }, then G = F ∗ is MEDE in
ΩF .
Proof: Let X ≤cx Y then Xe ≤st Ye (see Theorem 3.A.65 of [6]). As ge(x) is decreasing, using lemma
2.1 we have H(Xe) ≤ H(Ye) this implies H(fe) ≤ H(ge). Hence G is MEDE in ΩF .

In following we study the conditions under which MEDE exists in DMRL family.
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Theorem 2.5. Let ΩF={F : F is DMRL and µF < ∞ }. If k = supF∈ΩF
µF exist, then MEDE is

exponential distribution with mean k in ΩF .
Proof: Let F be DMRL then from theorem 4.2 of [Asadi and Zohrevand (2007)] we have

ε(F ; t) ≤ mF (t).

As the exponential distribution is IMRL then for all t > 0, ε(F ∗; t) ≥ mF∗(t) = k. Then we have

ε(F ; t) ≤ mF (t) ≤ mF∗(t) ≤ ε(F ∗; t).

Now in t = 0, proof is complete.
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