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APPLICATION OF COPULA IN GROUNDWATER

QUALITY INTERPOLATION
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Abstract. This study presents a new method for interpolation by us-
ing copula for groundwater quality zoning. For this purpose the qualita-
tive data of 107 observation wells in Ravar and Kerman plain contains
Bicarbonate, Sulphate, Calcium and Total Dissolved Solids (TDS) at
winter of 2014 were used. Then, the obtained results were compared to
the results obtained from conventional zoning methods to evaluate the
performance of copulas. Analysis of the results with respect to the root
mean square error showed that copula has a higher ability than common
methods in qualitative zoning of groundwater resources.

1. Introduction

In classical statistical analysis, samples have no spatial information in
space and consequently, the specific sample is not including any information
about the same sample in the found distance. But, geostatistics methods
have overcome these challenges. The main weakness of this method has
been normal data condition that occurs in natural conditions less than in
others. Groundwater often has skews and the assumption of having normal
distribution is not respected here. The sensitivity to outliers of this method
is another disadvantage. In this study we have tried to present a new method

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52, 34K20,
39B82.
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for interpolation by using copula. In this approach, the possibility of taking
advantage of all the copula family such as Archimedean family which has a
high flexibility for data processing, is available in terms of the groundwater
quality. For this purpose, the qualitative data of 107 observation wells in
Ravar and Kerman plain contains Bicarbonate, Sulphate, Calcium and Total
Dissolved Solids (TDS) at winter of 2014 were used. The obtained results of
this method by use of RMSE statistics, were compared with IDW, Kriging,
Kriging with Log transformation and Kriging with Box-Cox transformation
methods, and the obtained statistics indicated that the accuracy of the
presented method is much higher than other methods.

2. Materials and Methods

2.1. Description of Spatially Variable Structure. Copula can be used
as bivariate distribution function for the points at a fixed distance to describe
and analyze the spatial structures. In this regard, the appropriate marginal
distribution function is fitted to the data for variables of region Z. Then, the
data related to variables which their distance from each other is h±∆h are
separated which in this formula h is desired distance and ∆h is amplitude.
Usage of amplitude is necessary because of irregular distribution of wells and
low probability of finding some paired samples with the same distances. It
should be noted that variables conditions of regions must be applied to the
data. Just like variogram, as a numeric value is determined for each physical
distance, in this method, a copula is fitted for each interval. Consequently,
copula has more contains and more information than variogram. So, copula
for each paired data with distance of h ± ∆h can be considered as the
following formula:

Ch = C(Fz(Z(x)), Fz(Z(x+ h))) (2.1)

To describe the spatial structure, the other two conditions must be applied
as follows.

1. For ∥h∥ 7→ ∞ there should be Ch(u) 7→ Π2(u), and this indicates that,
these two variables are completely independent of each other in the large
distances.

2. For ∥h∥ 7→ 0 there should be Ch(u) 7→M2(u), and this condition also
implies that, at very short distances the two variables are entirely dependent
on each other. So, Nugget effect phenomenon which is created in calculation
and drawing of variograms, will be lost. Then, the classification distances
is considered for each class of combined copulas, which are obtained by
combining of beginning and ending copula of classification distance.

Ch(u1, u2) :=



λ1M(u1, u2) + (1− λ1)C1,h(u1, u2), 0 ≤ h < h1;
...

...
λiCi−1,h(u1, u2) + (1− λ1)Ci,h(u1, u2), hi−1 ≤ h < hi;

...
...

λnCn−1,h(u1, u2) + (1− λ1)Π(u1, u2), hn−1 ≤ h < hn.

(2.2)
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Figure 1. zoning map with copula method using mean and
median for bicarbonate

In above model λi is obtained according to distances of every point from
class bounds. Bardossy (2006) got conditional copula to evaluate one point
by using n Neighborhood points, and he considered median conditional cop-
ula as an estimation of distribution function at unknown point like following
model:

C−1(U1|F (x2), . . . , F (xk+1))|U1=0.5 (2.3)

If F be a distribution function of regional variable, so the estimation of
unknown point is inverse F function at the unknown point, it means:

ZMedian(x1) = F−1(C−1
k+1(0.5|F (x2), . . . , F (xk+1))) (2.4)

Also, the point estimate of mean value from unknown value can be calcu-
lated by use of following Equation:

ZMean(x1) =

∫ 1

0

F−1(u).c(u|F (x2), . . . , F (xk+1))du (2.5)

Aas et al. (2009) presented a new way to transform n-variate copula
to n(n − 1)/2 bivariate copula. This approach provides the possibility of
combining the copulas with different families. Two types of structures were
used in previous study but in this study we have used a new structure called
canonical vine (Aas et al., 2009). The overall structure copula density in
canonical vine is as follows:

n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

c(j,j+i|1,...j−1){F (xj |x1 . . . xj−1), F (xj+i|x1 . . . xj−1)} (2.6)

3. Conclusion

Figure 2 show the zoning map with copula method using mean and median
for bicarbonate and Table 2, shows the error values of different methods,
according to RMSE. The error value was calculated by using the so-called
cross validation leave-one-out method. According to Table 1, it can be
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Table 1. statistics criteria of the parameters

Parameter Copula Copula Kriging Kriging Kriging IDW
(Median) (Mean) (Simple) (Logarithmic) (Box-Cox)

Bicarbonate 1.54 1.73 1.82 1.86 1.81 2.00
Sulfate 6.55 6.61 6.92 6.65 6.93 6.94
Calcium 3.21 3.39 3.58 3.35 3.57 3.66
TDS 929.12 938.21 998.35 934.22 997.41 1055.17

noted that copula has a higher ability than Kriging methods in qualitative
zoning of groundwater sources. Also, as you see, the estimation of values
in copula method and by use of median has been done with less error than
using mean in copula method. One reason for this is that, in estimating
by using of median, the value of parameter is considered in the most likely
value of copula, but when mean is used, the value of parameter for each
copula is considered about 0.5. However, errors of both used methods in
all cases were higher than the others, excepting of Calcium estimation with
logarithmic transformation in comparison to mean based copula in Kriging
method. Accordingly, it can be said that the results of this study indicate
copula method has a higher accuracy that other methods such as Kriging
and IDW.

References
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multiple dependence, Insurance: Mathematics and economics, 44(2),182-198.
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Abstract. In this paper, we obtain Non-linear regression for PCOS-II
arising from dependent units that are jointly distributed according to
the Clayton family with an example.

1. Introduction

Let X1, . . . , Xn dependent and identical random variables distributed ac-
cording to an Archimedean copula with completely monotone generator with
joint survival function as

P (X > x) = ψ

(
n∑
i=1

ψ−1(F̄ (xi))

)
=

∫ ∞

0

n∏
i=1

Gα(F̄ (xi))dMψ(α) ,

where x = (x1, . . . , xn), ψ : R+ → [0, 1] is an n-monotone (n ≥ 2) function
such that ψ(0) = 1 and limx→∞ ψ(x) = 0 and F̄ = 1−F is the survival func-
tion of Xi, i = 1, . . . , n. Let us further assume that F has density function
f and the function G has the first derivative g. Suppose XR

1:m:n, . . . , X
R
r:m:n

are the PCOS-II of size m from an dependent sample of size n with a pro-
gressive censoring scheme R = (R1, . . . , Rm). Rezapour, obtain the joint
probability density function of the first r progressively Type-II Censored

2010 Mathematics Subject Classification. Primary 62G02; Secondary 62N01, 62G05.
Key words and phrases. Copula, Archimedean copula, Progressive Type-II Censored

Order Statistics.
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Order Statistics as given by

fXR(x1, . . . , xr) =

∫ ∞

0

( r∏
j=1

γj

)
[
r−1∏
j=1

g(xj , α)Ḡ
Rj (xj , α)]g(xr, α)

×Ḡ(γr−1)dMψ(α) ,

where XR = (XR
1:m:n, . . . , X

R
r:m:n) γj =

∑m
v=j(Rv + 1), γ1 = n, Ḡ(x, α) =

exp

(
− αψ−1

(
F̄ (x)

))
, g(x, α) = ∂

∂xḠ(x, α).

In this paper, we present the Non-linear regression based on PCOS-II for
prediction the (r + s)th PCOS-II given rth PCOS-II.

2. Non-linear regression prediction under PCOS-II Arising
from clayton family

In this section, we assume XR = (XR
1:m:n, . . . , X

R
r:m:n), the first r PCOS-

II arising from units that are jointly distributed according to a clayton

Archimedean copula. The generator of Clayton family is ψ(s) = (1 + s)
−1
θ

for θ > 0, therefore, we have ψ−1(s) = s−θ − 1. Thus, the joint density
function of the XR equals

fXR(x1, . . . , xr) =

∫ ∞

0

( r∏
j=1

γj

)
αrθr

(
r∏
j=1

[1− F (xj)]
−1−θf(xj)

)

× exp

(
− α

( r−1∑
j=1

(
[1− F (xj)]

−θ − 1
)
(1 +Rj)

+γr

(
[1− F (xr)]

−θ − 1
)))

dMψ(α) . (2.1)

Therefore, under the Clayton family assumptions, the marginal density
function of XR

r:m:n and the bivariate density function of (XR
r:m:n, X

R
r+s:m:n),

1 ≤ r < r + s ≤ m,

fXR
r:m:n

(xr) =
cr−1f(xr)

(1− F (xr))1+θ

r∑
i=1

ai(r)

(
1 + γi

(
(1− F (xr))

−θ − 1
))− θ+1

θ

,

fXR
r:m:n,X

R
r+s:m:n

(xr, xr+s) =
cr+s−1(1 + θ)f(xr+s)f(xr)

(1− F (xr))1+θ(1− F (xr+s))1+θ

r+s∑
j=r+1

r∑
i=1

×ai(r)a(r)j (r + s)(1 + γjη(xr+s, xr; θ) + γiζ(xr; θ))
−(2θ+1)

θ .
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where

η(xr+s, xr; θ) =
(
(1− F (xr+s))

−θ − (1− F (xr))
−θ
)
, cr−1 =

r∏
j=1

γj

ζ(xr; θ) =
(
(1− F (xr))

−θ − 1
)
, a

(r)
j (r + s) =

r+s,∏
i=r+1,j ̸=i

1

γi − γj
.

To obtain the Non-linear regression we need the estimated parameters. For esti-
mating the parameter θ, we should maximizes the likelihood function. Therefore,
the value of θ which maximizes the likelihood function is obtained by solving the
equation

0 =
θr−1(−1)r

∏r
j=1 f(xj)ψ

(r)(g(x,R; θ))

(
∏r

j=1(1− F (xj))1+θ

(
r − θ

r∑
j=1

ln(1− F (xj))

+
1 + rθ

1 + g(x,R; θ)
(γr(1− F (xr))

−θ−1 ln(1− F (xr)) +
r−1∑
j=1

(1 +Rj)

×(1− F (xj))
−θ ln(1− F (xj))

)
, (2.2)

where g(x,R; θ) = γr((1−F (xr))−θ−1)+
∑r−1

j=1((1−F (xj))−θ−1)(1+Rj). Non-

linear regression for prediction of XR
r+s:m:n, based on XR

r:m:n = x can be obtained
by E(Xr+s|Xr = xr) which equals

D(r, s, xr, γr; θ)
r+s∑

j=r+1

r∑
i=1

ai(r)a
(r)
j (r + s)

{
xr
γj

(1 + γi([1− F (xr)]
−θ

−1))−
1+θ
θ +

1

γj

∫ ∞

xr

(γj [1− F (xr+s)]
−θ +B(xr, γi, γj ; θ))

−( 1+θ
θ )dxr+s

}
, (2.3)

where

D(r, s, xr, γr; θ) =
cr+s−1

cr−1

∑r
i=1 ai(r)(1 + γi

(
[1− F (xr)]−θ − 1

)
)−

1+θ
θ

,

B(xr, γi, γj ; θ) = 1− γi + (1− F (xr))
−θ(γi − γj).

Example 2.1. Let X = (x1, . . . , xn) has an exponential distribution with distri-
bution function F and density functionf

Table 1. MLE of parameters θ and λ

θ λ θ̂ λ̂
0.5 0.8 0.564 0.78
2 1 1.89 1.06
1 2 1.26 2.18
3 5 2.98 4.48
6 8 6.4 7.56
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Non-linear regression for prediction of XR
r+s:m:n, based on XR

r:m:n = x can be ob-
tained by E(Xr+s|Xr = xr) which equals

D(r, s, xr, γr; θ̂, λ̂)
r+s∑

j=r+1

r∑
i=1

ai(r)a
(r)
j (r + s)(

xr
γj

[1 + γi(exp(λ̂θ̂xr)− 1)]−( 1+θ̂

θ̂
)

+
1

λ̂θ̂γj

∫ −1

1+γi[exp(λ̂θ̂xr)−1]

0

)(
1

z
−B(r, s, xr, γr; θ̂, λ̂))

−1z
1

θ̂
−1dz),

where

D(r, s, xr, γr; θ̂, λ̂) =
cr+s−1

cr−1

∑r
i=1 ai(r)

(
1 + γi[exp(λ̂θ̂xr)− 1]

−(1+θ̂)

θ̂

) ,
and

B(r, s, xr, γr; θ̂, λ̂) = 1− γi + (γi − γj) exp(λ̂θ̂xr).
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Abstract. Statistical analysis of natural phenomena with spa-
tial and temporal correlations requires to specify their correlation
structure via a covariance function. A separable spatio-temporal
covariance function is usually used for the ease of application.
Nonetheless, the separability of the spatio-temporal covariance func-
tion can be unrealistic in many settings, where it is required to use
a non-separable spatio-temporal covariance function. In this pa-
per, a structural copula function is applied to construct a family of
non-separable spatio-temporal covariance function. Next, a mod-
ified genetic algorithm is applied to explore the spatio-temporal
correlation structure of Ozone data in Tehran, Iran.

1. Introduction

The space-time model for analyzing the spatial data observed over
time has received more attentions in recent years. In this line, many
researchers have introduced various classes of valid nonseparable spatio-
temporal covariance functions (see e.g. [1], [2] and [8]).

One of the drawbacks of using such a nonseparable space-time co-
variance functions, however, is the availability of many parameters.

2010 Mathematics Subject Classification. Primary 62H11; Secondary 91B72.
Key words and phrases. Copula Function, Spatio-temporal Covariance, Genetic

Algorithm.
∗ Speaker.

9



10 MOHSEN MOHAMMADZADEH, MEHDI OMIDI

This shortcoming encourages experts to use very practical and robust
optimisation methods to estimate parameters. Among many capable
computational methods, the Genetic Algorithm (GA) suggests a flexi-
ble and broader range of solutions for finding the extremum values.

In the present paper, a copula function is used to construct some
nonseparable spatio-temporal covariance functions. Moreover, to over-
come the problems of the parameter estimation, we modified Binary
GA proposed by [4] in a more sensible way. All proposed models and
techniques have been applied to analyse the Ozone concentration col-
lected over the entire year 2012 in Tehran, the capital city of Iran.

2. Background Concepts

For two continuous random variables X and Y with distribution
functions FX(x) and GY (y) respectively, and joint distribution function
H(·, ·), by Sklar’s Theorem ([9]) a unique copula function K(·, ·) exists
such that

H(x, y) = K(FX(x), GY (y)), (x, y) ∈ ℜ̄2.

Suppose φ(t) : [0, 1] → [0,∞] is a decreasing function satisfying
φ(1) = 0 with inverse φ−1(·), then

Kφ(FX(x), GY (y)) = φ−1(φ(FX(x)) + φ(GY (y))) (2.1)

is a copula function if and only if φ(·) is convex ([7]). A class of copula
functions made by Eq. (2.1) is known as Archimedean family, with a
generating function φ(·).

For the theoretical results in subsequent sections, some particular
functions need to be defined that will be used to construct a spatial
covariance function.

Definition 2.1. A function ϕ(·) is called a Completely Monotone (CM)
function on an interval I, if all of its derivatives exist on I and satisfies
in

(−1)nϕ(n)(t) ≥ 0, n = 0, 1, . . .

where ϕ(n) denotes the n’th derivative of ϕ(·).

Based on Bernstein’s Theorem, ϕ(·) is CM if and only if it is the
Laplace transformation of positive measure M(·). Then for all t > 0,
the following exists

ϕ(t) =

∫ ∞

0

e−rtdM(r) (2.2)
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Table 1. Some Archimedean copula and their corre-
sponding stationary spatial covariance functions.

Copula Generator Parameter space Covariance function

Ali-Mikhail-Haq ln 1−θ(1−t)
t

[−1, 1] 1−θ
exp(||h||α)−θ

Joe − ln(1− (1− t)θ) [1,∞) 1− (1− e−||h||α)
1
θ

Frank − ln{ exp(−θt)−1
exp(−θ)−1

} ℜ − {0} − 1
θ
ln{(e−θ − 1)e−||h||α + 1}

Gumbel-Barnett ln(1− θ ln t) [0, 1) exp{ 1−e||h||α

θ
}

Gumbel-Hougaard (− ln t)θ [1,∞) exp(−||h||α)

A nonnegative function ψ(t), t > 0 is called Bernstein function if its
derivative is CM. Some important properties of CM and Bernstein
functions are as follows.

If ϕ1(t) and ϕ2(t) are CM and ψ1(t) and ψ2(t) are Bernstein functions,
then

(i) ϕ1(t) + ϕ2(t) and ϕ1(t)ϕ2(t) are CM.
(ii) ϕ1(ψ1(t)) is CM.
(iii) ψ2(ψ1(t)) is Bernstein.

[5] showed that the inverse of a generating function of any Archimedean
copula family is a Laplace transformation. Then, the inverse of gener-
ating functions of the Archimedean copulas are CM. Therefore, for any
t > 0 and ρ ∈ [0, 1] the function tρ is Bernstein. By (ii) for any gener-
ating function φ(·) and φ(0) = ∞, φ−1(tρ) is CM. Thus, according to
[6], for any α = 2ρ, C(||h||) = φ−1(||h||α), h ∈ ℜd, d ≥ 1 is a stationary
covariance function.

Table 1 shows some generators of the Archimedean copula family
presented in [7] along with their corresponding stationary covariance
functions.

3. Construction of Spatio-temporal Covariance Function

A spatio-temporal data is modeled by a random field {Z(s, t), (s, t) ∈
D × T}, where D ⊂ ℜd, T ⊂ ℜ. Z(s, t) is a real-valued stochastic
process at the spatial location s, and time t.

If the mean function µ(s, t) is constant for all (s, t) and covariance
function C(s, s′, t, t′) depends only on spatial lag, hs = s − s′ and
temporal lag ht = t − t′, then the random field is called second-order
stationary. In this case, the spatio-temporal covariance is denoted by
C(hs, ht).



12 MOHSEN MOHAMMADZADEH, MEHDI OMIDI

[2] showed that if ϕ(·) is CM and ψ(·) is Bernstein with ψ(0) = 1
and ψ(∞) = ∞, then

Cs,t(hs, ht) =
σ2

ψ(|ht|2)d/2
ϕ(

||hs||2

ψ(|ht|2)
) (3.1)

is a valid stationary spatio-temporal covariance function in ℜd ×ℜ.

Example 3.1. Let ϕ(t) = exp(−βtr1) and s(t) = (atα + 1)
−1
θ , then

Model 1 : Cs,t(hs, ht) = σ2(a|ht|α + 1)
−d
2θ exp{−β[b||hs||2(a|ht|α + 1)

−1
θ ]r1}

for a > 0, b > 0, 0 < r1 ≤ 1, α ∈ (0, 2], β > 0, θ ≥ 1 is a valid
stationary spatio-temporal covariance function in ℜd ×ℜ.

[5] showed that for any generator of the Archimedean copula, φθ(t), if
θ1 ≥ θ2 and φθ(0) = ∞ then ψ(t) = φθ2(φ

−1
θ1
(t)) is a Bernstein function

such that ψ(0) = 0 and ψ(∞) = ∞. Therefore, if ϕθ′(·) is CM and
φθ(t) is an Archimedean copula generator, then ϕθ′(φθ2(φ

−1
θ1
(||h||α)))

and φ−1
θ′ (φθ2(φ

−1
θ1
(||h||α))) for θ1 ≥ θ2 and α ∈ [0, 2] are stationary

spatial covariance function in ℜd.
[3] showed that if Cr

s (hs) is a purely spatial covariance in ℜd and
Cr
t (ht) is a purely temporal covariance in ℜ, then

Cs,t(hs, ht) =

∫ ∞

0

Cr
s (hs)C

r
t (ht)dµ(r) (3.2)

is a stationary spatio-temporal covariance function in ℜd × ℜ, where
µ(·) is a finite positive measure.

Theorem 3.2. Let φ, φ1and φ2 be generators of Archimedean copulas
such that φ(0) = φ1(0) = φ2(0) = ∞, then

Cs,t(hs, ht) = φ−1
θ [φ1θ2

(φ−1
1θ1

(a||hs||α)) + φ2θ4
(φ−1

2θ3
(b|ht|β))] (3.3)

for α, β ∈ (0, 2], θ1 ≥ θ2, θ3 ≥ θ4 and a, b > 0, is a family of stationary
spatio-temporal covariance functions in ℜd ×ℜ.

Example 3.3. Let φ be the generator of Joe copula, φ1 generator of
Gumbel-Hougaard and φ2 generator of Clayton copula, then

Model 2 : Cs,t(hs, ht) = σ2[1− (1− exp{−a||hs||α − (1 + b|ht|β)r1 + 1})
1
θ ]

for 0 < r1 ≤ 1, α, β ∈ (0, 2], θ > 1 and a, b > 0, is a stationary
spatio-temporal covariance function in ℜd ×ℜ.

Example 3.4. Let φ be the generator of Gumbel-Hougaard and φ1

and φ2 be the generators of Clayton copula, then

Model 3 : Cs,t(hs, ht) = σ2 exp{−[(1 + a||hs||α)r1 + (1 + b|ht|β)r2 − 2)]
1
θ }
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Table 2. Parameter estimates of the models, the best
final cost and AIC criterions.

Model
Parameter 1 2 3 4

υ1 5.917 0.042 0.023 1.275
υ2 2.740 3.750 0.767 7.595
α 0.998 0.067 0.034 0.019
β 2.729 0.893 1.635 0.116
θ 3.650 1.256 1.048 0.237
r1 0.890 0.534 0.980 0.359
r2 − − 0.493 0.116
σ2 0.323 0.376 0.120 0.126

-Best final cost 995.042 997.175 996.928 994.755
−AIC 1968.084 1972.350 1969.856 1965.510

for 0 < r1 ≤ 1, 0 < r2 ≤ 1, α, β ∈ (0, 2], θ > 1 and a, b > 0, is a
stationary spatio-temporal covariance function in ℜd ×ℜ.

Example 3.5. Let φ, φ1 and φ2 be generators of Clayton copula, then

Model 4 : Cs,t(hs, ht) = σ2{(1 + a||hs||α)r1 + (1 + b|ht|β)r2)− 1}
−1
θ

for 0 < r1 ≤ 1, 0 < r2 ≤ 1, α, β ∈ (0, 2], θ > 1 and a, b > 0, is a
stationary spatio-temporal covariance function in ℜd ×ℜ.

4. Application

In this section, the models 1 to 4 proposed in the previous section are
applied to determine the spatio-temporal correlation structure of ozone
data in Tehran, Iran. This megacity with a population of over 10 mil-
lion, is suffering from high air pollution. The weekly average of ozone
concentration in 2012 were observed at 9 different pollution monitor-
ing stations, namely Sorkhe Hesar, Golbarg, Aghdasiyeh, Masoodiyeh,
Ray, Geophysics, Azadi, Ponak and Zarpark.

Exploratory data analysis revealed non-normality of the ozone data,
but the Shapiro-wilk test with p value = 0.146 was significant for the

transformed data by Box-Cox transformation xλ−1
λ

, with λ = 0.2181 .
As a result, the transformed data outcomes are taken into account as
a Gaussian spatio-temporal random field Z(s, t).

Regarding the scale parameters of space and time, we assumed that
a = ( 1

υ1
)α, υ1 > 0 and α ∈ [0, 2] for all models, b = ( 1

υ2
)2 in model 1,

b = ( 1
υ2
)β, υ2 > 0 and β ∈ [0, 2] for models 2, 3 and 4.

For estimate parameters of all models Genetice algorithm was used
and the parameter estimates, the best final cost and AIC criterion are
shown in Table 2. Because of the minimum values of AIC and the best
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final cost, Model 2 is relatively better among the others for structural
modelling of spatio-temporal correlation of ozone data in Tehran.

5. Conclusion

To analyse the spatio-temporal data, it is necessary to use a valid
non-separable spatio-temporal covariance function. In the present pa-
per, copula function is used to construct spatial and spatio-temporal
covariance functions. For the estimation of the model parameters, the
GA was used with a new selection strategy. Then, to ensure the ac-
curacy and precision of the estimations, the best cost of likelihood
function was found by repeating the GA in ten times. The results
demonstrate that GA is an enormously powerful and successful algo-
rithm in the estimation of the spatio-temporal covariance model.
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Abstract. The most of advanced Bonus-Malus Systems works based
upon both frequency and severity of reported claims. This article uti-
lizes copula idea to develop a bivariate credible confidence interval for
frequency and severity of a given Bonus–Malus System.

1. Introduction

In many countries insurers use Bonus-Malus system, say BMS, in or-
der to provide fair premium amounts based on policyholders claim experi-
ence. Such system penalizes insured drivers who claim at least one accident
(malus) and rewards claim-free drivers (bonuses). In practice, a BMS con-
sists of a finite number of levels, numbered from 1 to s, as policyholders risk
classification. In fact, the policyholder who has the smallest risk-tendency
stands in the first level and pays the smallest premium. In the same manner,
the policyholder who has the largest risk-tendency stands the last level and
pays the largest premium.

Martin & Lof (1973) are the first authors, who study theory of BMS.
Up to now, several books and papers have been written about BMS. One
of the complete sources of this, we can mention to Lemaire (1995) and
Dionne (2001). Basic objection of classic BMSs is that transmittal rules

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52, 34K20,
39B82.

Key words and phrases. Clayton copula; Credible confidence intervals; Bayesian anal-
ysis; Geometric quantiles; Optimal Bonus–Malus Systems .
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and their premium only is based on number of losses without considering
size of reported claims. This approach may be a policyholder who had
accident with a small size of loss is penalized like a policyholder who had
accident with big size of losses. For this problem, actuaries proposed the
optimal BMS designed not only on the number of losses but also on the size
of losses [1].

With using definition of his system, we find the joint distribution of num-
ber (frequency) and size (severity) of claims by using copula functions. We
utilize independence and clayton copula in this direction. Then, we con-
struct simultaneous credible confidence interval for both of number and size
of reported claims. To find such simultaneous credible confidence interval,
we utilize geometric quanties.
Copula approach provides a practical method to take into account depen-
dence between random variables from their marginal distributions. Consider
any continuous random variables X1, · · · , Xd with corresponding distribu-
tion functions F1, · · · , Fd. Joint distribution function can be restated as

F (x1, · · · , xd) = Cθ[F1(x1), · · · , Fd(xd)], (1.1)

where Cθ is a copula function with parameter θ.. If (X1, · · · , Xd) ∈ Rd

has a continuous multivariate distribution with F (x1, · · · , xd) = P (X1 ≤
x1, · · · , Xd ≤ xd), then by Sklar’s theorem there is a unique copula function
C : [0, 1]d −→ [0, 1] of F such that,

F (x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)). (1.2)

One of the important family of copula, is Archimedean copulas that con-
struct based on generator φ [5]. This paper employs the following Clayton
copula (a member of the Archimedean copulas) to develop the desired si-
multaneous credible confidence interval.

C(u, v) = (u−θ + v−θ − 1)−1/θ, θ ∈ (0,∞) (1.3)

This paper structured as the following. Section 2 represents main results.
Practical application of our findings have been provided in Section 3.

2. Main results

The following two theorems provide posterior distribution of parameters
of frequency and severity.

Theorem 2.1. Suppose X1, · · · , Xt stands for the number of reported acci-
dents in t years. Moreover, suppose that X1, · · · , Xt are i.i.d random vari-
able has been distributed according to a Poisson distribution (with mean
λ) whenever parameter λ has been given. Also suppose that λ has prior
distribution Gamma(a, b). Then posterior distribution λ|X1, · · · , Xt is the

Gamma(a+K, b+ t) distribution which K =
∑t

i=1 xi.
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Proof. For proof use from bayes rule.

π(λ | x) =
f(x | λ)f(λ)∫
f(x | λ)f(λ) dλ

First calculate denominator.

A =

∫
f(x | λ)f(λ) dλ =

∫
e−λtλ

∑t
i=1 xi∏t

i=1 xi!

λa−1bae−bλ

Γ(a)
dλ

=
ba∏t

i=1 xi!Γ(a)

Γ(
∑t

i=1 xi + a)

(t+ b)
∑t
i=1 xi+a

Now, we have

π(λ | x) =
e−λtλ

∑t
i=1 xi∏t

i=1 xi!

λa−1bae−bλ

Γ(a)
×A−1

=
e−λ(t+b)(t+ b)

∑t
i=1 xi+aλ

∑t
i=1 xi+a−1

Γ(
∑t

i=1 xi + a)

�

Theorem 2.2. Suppose Y1, · · · , Yt stands for the size of reported accidents
in t years. Moreover, suppose that Y1, · · · , Yt are i.i.d random variable
has been distributed according to an exponential distribution (with mean β)
whenever parameter β has been given. Also suppose that λ has prior dis-
tribution IGamma(s,m). Then posterior distribution β|Y1, · · · , Yt is the

IGamma(s+ t,m+ L) distribution which L =
∑t

i=1 yi.

Proof. Like previous theorem, to calculate denominator we have:

B =

∫
f(y | β)f(β) dβ =

∫
(

1

β
)te
−

∑t
i=1 yi
β

1
me
−m/β

( βm)s+1Γ(s)
dβ

=
ms+1

mΓ(s)

(
∑t

i=1 yi +m)Γ(s+ t)

(
∑t

i=1 yi +m)s+t

Now we have

π(β | y) = (
1

β
)te
−

∑t
i=1 yi
β

1
me
−m/β

( βm)s+1Γ(s)
×B−1

=

1∑t
i=1 yi+m

e
−

∑t
i=1 yi+m

β

( β∑t
i=1 yi+m

)s+tΓ(s+ t)

�

To construct simultaneous credible confidence intervals, first we connect
two posterior distribution by a Clayton copula. Then by utilize geometric
quantiles (Chaudhuri 1996), obtain this intervals [3]. In this way we define

u which u = 2α − 1 and α ∈ (0, 1) such that B(d) = {u|u ∈ Rd, |u| < 1}.
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Then the geometric quantile Q̂n(u) corresponding to u and based on d-
dimensional data points X1, . . . ,Xn is defined as

Q̂n(u) = arg min
Q∈Rd

n∑
i=1

Φ(u,Xi −Q) (2.1)

We let d = 2 and generate random variable from joint distribution with
Clayton copula. Now we have n point and purpose is calculate αth quan-
tile of this points. To solve the equation can use iterative methods like
the Newton-Raphson-type method. One needs an initial approximation of
Q̂n(u) to start the iteration. Such initial approximation can be the vector
of medians of Xi. In this way simultaneous credible confidence intervals is
corresponding quantiles of the either posterior distributions.

3. A simulation study

Suppose 10 reported claims in a Bonus-Malus system are available. More-
over suppose that both prior distribution are λ ∼ Gamma(0.3, 1/3) and
β ∼ IGamma(2.5, 1/5). Now using result of pervious section, we develop bi-
variate credible confidence interval for frequency and severity of such Bonus–
Malus System.

Table 1: Credible confidence interval for frequency and severity under independent copula.
Copula 90% 95%

Independent copula (0.07, 0.74) × (2.52, 7.76) (0.057, 0.83) × (2.35, 8.58)

From this result, we conclude with 90% confidence, a person will be had
0.07 to 0.74 acccident and will be had 2.52 to 7.76 unit of money severity of
claims in next year.

Table 2: Credible confidence interval for frequency and severity under Clayton copula.
Copula 70% 60%

Clayton copula (0.29, 5.49) × (2.88, 9.78) (0.29, 1.52) × (3.07, 5.93)

From this result, we conclude with 70% confidence, a person will be had
0.29 to 5.49 acccident and will be had 2.88 to 9.78 unit of money severity of
claims in next year.
Note that since we have definition B(d), so in a seconde way, Unfortunately
confidence level is less and interval is larger than first way.

4. Conclusion and suggestion

This article employs a Clayton copula to provide a credible confidence
interval for frequency and severity of a Bonus–Malus System. Using such
credible confidence interval, one may improve actuarial inference about a
Bonus–Malus System. Using other copula such actuarial inference may be
improved.
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Abstract. Copulae is one of the main ways of modelling dependence.
Many proposals have been made recently for goodness of fit testing of
copula models. In this paper we propose and analysis the several most
common methods of goodness of fit test that use for copula selection.
We eventually apply these methods to select a suitable copula of the
two variables associated with the Iran’s financial data: gross domestic
production, oil income index.

Introduction

The definition of a d-dimensional copula is a multivariate distribution C,
with uniform margins U(0, 1). Sklar (1959)’s theorem states that every
multivariate distribution F with margins F1, F2, . . . , Fd can be written as

F (x1, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd))

for some copula C. For more information about analysis of copulae, see Joe
(1997) or Nelsen (1999).
Goodness of fit testing for copulae recently emerged as a challenging infer-
ential problem and some approaches have been proposed. The limitation of
the copula approach is the lack of a recommended way of checking whether
the dependency structure of a data set is appropriately modeled by a chosen

Key words and phrases. Blanket tests, Clarke-test, Kendall test, Vuong test.
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family of copulae. According to Genest et al. (2009) copula goodness of fit
tests in the literature can be divided into three groups:
(i) Procedures for testing specific parametric copula families such as the
Normal or Clayton families.
(ii) General tests for any copula family but which involve some kind of pa-
rameter tuning or other strategic choices of smoothing parameter, weight
function or kernel.
(iii) So-called blanket tests which are applicable to all copula structures and
do not involve any preliminary strategic choices as in (ii).
Here we will concentrate on the last group and, in particular, on two blanket
tests based on the empirical copula process and on Kendall’s transformation
and on Vuong and Clarke-teste, since we are interested in general procedures
without any limitations in its use. These tests are often used in statistical
hypothesis testing, in tests based on the empirical copula process and on
Kendall’s transformation we test the hypothesis if a chosen copula fits the
underlying copula of the data.

H0 : C ∈ C0 = {Cθ : θ ∈ Θ} vs H1 : C 6∈ C0 (1)

Where C0 is the set of copulas and Θ is the parameter space.
Two tests based on empirical copula process
Let v1 = (v11, . . . , vn1), . . . ,vd = (v1d, . . . , vnd) be U(0, 1) distributed ran-
dom samples with copula C. Suppose it is desired to test the null hypothesis
(1). Naturally, we want to compare the distance between the empirical cop-
ula Cn, i.e.

Cn(u) =
1

n

n∑
i=1

1{vi1 ≤ u1, . . . , vid ≤ ud} , u = (u1, . . . ,ud) ∈ [0, 1]d

and the parametric estimate Cθ̂, where θ̂ is an estimate of the unknown
parameter θ. Based on this concept, Genest and Remillard [2008] established
the empirical copula process

Cn =
√
n(Cn − Cθ̂)

which measures the distance (Cn − Cθ̂) with a scale
√
n.

Genest and Remillard [2008] considered rank-based versions of the familiar
Carmer von Mises and Kolmogorov Smirnov statistics in combination with

SCn
n =

∫
[0,1]d

C2
n(u)dCn(u) and TCn

n = sup
u∈[0,1]d

|Cn(u)|

We call GOF tests based on these statistics tests based on the empirical
copula process.
Two tests based on Kendall’s transform
These tests are explored by Genest and Rivest [1993], and Wang and Wells
[2000]. Let X = (X1, . . . ,Xd) be a continuous d-variate random vector with
distribution function F , margins F1, . . . , Fd and unique underlying copula
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C. Let Ui = Fi(Xi) for i = 1, . . . , d, then the joint distribution of U =
(U1, . . . ,Ud) is C. Suppose we are interested in Hypothesis

H0 : C ∈ C0 = {Cθ : θ ∈ Θ}

Now under H0, the vector U is distributed as Cθ for some θ ∈ Θ. Let Kθ

denote the Kendall distribution function of Cθ, and Kn denote the corre-
sponding empirical Kendall distribution function which is an estimator of
Kθ. Hence, Cθ(U) has distribution Kθ. Through the Kendall process

Kn(t) =
√
n(kn(t)− kθn(t))

one can test

H
′′
0 : k ∈ K0 = {kθ : θ ∈ Θ}

More discussion about this limitation can be found in Wang and Wells [2000]
and Genest et al. [2007]. The specific test statistics for this GOF test are
given by

SKn
n =

∫ 1

0
|Kn(t)|2dkθn(t)

TKn
n = sup

0≤t≤1
|Kn(t)|

Vuong and Clarke-test
The Vuong and the Clarke-test (Vuong [1989], Clarke [2007]) are tests to
compare two models, which are not necessarily nested. Both are based on
the likelihood or rather on their likelihood ratio and the Kullback-Leibner
information criterion (KLIC). The KLIC between the true copula C0 and
an alternative copula C1 can be rewritten as

KLIC(C0, C1) =

∫
[0,1]2

c0(u, v) log

[
c0(u, v)

c1(u, v)

]
dudv

where c0 and c1 denote the copula densities corresponding to copulas C0

and C1, respectively. The model with the minimum KLIC, i.e. the smallest
distance, is the best one.
To compare two models and on the basis of the likelihood ratio from above,
Vuong [1989] defined and calculated the following statistics: (see also Er-
hardt [2006]).
As we see, If model 1 is better than model 2, its KLIC statistic is smaller
and the following inequality holds

KLIC1(u, v) < KLIC2(u, v)

This expression reduces to

E

[
log

(
c1(u, v)

c2(u, v)

)]
> 0

In other words, the model 1 is favored over the model 2, if its log-likelihood
values are significantly larger.
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Vuong proposed the following statistic

mi = log

(
c1(u, v)

c2(u, v)

)
, i = 1, . . . , n

Then m = (m1, . . . ,mn)t is a random vector with expectation

E[m] = µm0 = (µm1 , . . . , µ
m
n )t,

if h(·) is the true probability mass function. If both models are equally close
to the true specification, it holds µm0 = 0. Hence, we formulate our test
problem as

H0 = µm0 = 0 vs H1 = µm0 6= 0 (2)

Based on m, Vuong defined a test statistic v

v =

√
n

(
1
n

n∑
i=1

mi

)
√

1
n

n∑
i=1

(mi −m)2

, m =
1

n

n∑
i=1

mi

and has shown that under H0

v
D−→ N(0, 1).

The Clarke-test is as the Vuong-test a test for model selection based on
KLIC. The difference between the Vuong and the Clarke-test is the null
hypothesis. The null hypothesis of the Clarke-test is:

H0 : P

[
log

(
c1(u, v)

c2(u, v)

)
> 0

]
= p

If the models are equivalent then p has to be 0.5.
Application: Financial data
In this section, we study two time series of seasonal data in Iran for the
period from 20.03.1990 to 20.03.2007. Further notations, we denote the
variable with observations converted from the two indices as follows:
B: for the variable from Gross Domestic Production.
C: for the variable from oil income index.
We choose the Normal(N), t, Clayton(C), Gumbel(G), Frank(F), BB1 and
BB7-copula to compare with the GOF tests. We denote the p-values of tests
base on Kendall’s transform as PSn(Kn) and P Tn(Kn) corresponding to the
Carmer von Mises (Sn) and Kolmogorov Smirnov (Tn) statistics that list in
table (1). We highlighted the p-values which are greater than 0.05, because
we chose the 5%-level as the critical level for our hypothesis test. Table (1)
reports that T copula has the highest p-values for pair (C,B) in the tests
based on Kendall’s transform.
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Table 1. p-values of the tests based on Kendall’s transform
(denoted as PSn(Kn) and P Tn(Kn)) for data pair (C,B)

p− value N T C G F BB1 BB7

PSn(Kn) 0.2 0.64 0.01 0 0.01 0.19 0.17

P Tn(Kn) 0.46 0.52 0.02 0 0 0.15 0.22

Another method to get a goodness of fit test is the Vuong or Clarke-test.
If we get the following table (Table (2)) as an output of our test, the t-
copula fits the data best, because the t-copula has the highest score. As
a further result one can see that the Gaussian copula is the second best
copula family, which is not very surprising if we remember that the t-copula
converges against the Gaussian copula. The score value of 6 means that in
the 6 Vuong-tests the t-copula was six times better than the other copula.
The negative score of the Clayton, Frank and Gumble copula is the result
of single tests, i.e. the Clayton, Frank and Gumble copula are more often
beaten by the comparing copula than vise versa.

Table 2. goodness of fit table based on the Vuong-test

Test N T C G F BB1 BB7
Vuong 3 6 −3 −3 −4 1 0

Thereby we select T copula with no doubt.
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Abstract. In this paper, we present some weaker conditions than
those exists in the literature under which a partially nested Archimedean
copula with two nesting levels is still a copula. We also obtain the
density function of partially nested Archimedean copula C with
two nesting levels and d0 child copulas and state certain conditions
under which a partially nested Archimedean copula with arbitrary
nesting levels is indeed a copula.

1. Introduction

The Archimedean copula is a copula that is convenient in practice,
flexible and appropriate for a variety of joint distributions. (See e.g.
Joe (1997) and Nelsen (2006).) These copulas have many desirable
properties and have a simple and closed form. They can be used to
model many data sets and goodness of fit tests for this class also exist.
Archimedean copula were used by Rezapour et. al. (2013a) and Reza-
pour and Alamatsaz (2014) to study a (n−k+1)-out-of-n system with
dependent components. Rezapour et. al. (2013b) also considered some
reliability properties of a system whose components are distributed ac-
cording to an Archimedean copula. As mentioned by Marshall and
Olkin (1988), this class has a close relation to Laplace Transforms
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(LT). Nested Archimedean copula, as an extension of Archimedean
copula, has been discussed by many authors (see Joe,1997 and Mc-
Neil,2008). McNeil (2008) gave certain conditions under which a nested
Archimedean copula is indeed a copula. Here, following the work of
McNeil and Nešlehová (2009), we present some weaker conditions under
which a nested Archimedean copula is still a copula.

2. Main results

We recall that a copula associated with a multivariate distribution
function(df) F is a df C : [0, 1]d 7→ [0, 1] satisfying

F (x) = C(F1(x1), . . . , Fd(xd)),

where, for i = 1, ldots, d, the Fi’s are univariate marginal df’s. A copula
Cψ is said to be an Archimedean copula if it can be expressed as

Cψ(u1, . . . , ud) = ψ

(
d∑
i=1

ψ−1(ui)

)
, (2.1)

where ψ : <+ 7→ [0, 1] is a d-monotone function (d ≥ 2), (i.e. (−1)kψ(k)(x)
≥ 0, k = 0, 1, . . . , d− 2 , and (−1)d−2ψ(d−2) is non-increasing and con-
vex) such that ψ(0) = 1, and limx→∞ ψ(x) = 0. ψ is called the genera-
tor function of the copula. For more details, see [5]. If the generator of
an Archimedean copula is completely monotone, i.e. (−1)kψ(k)(x) ≥ 0,
k = 0, 1, . . ., we can rewrite the Archimedean copula in (2.1) as

Cψ(u1, . . . , ud) =

∫ ∞
0

d∏
i=1

Gα(ui)dMψ(α), (2.2)

where G(x) = exp
(
− ψ−1(x)

)
and Mψ(.) is the df of a non-negative

random variable with LT ψ (see [1], p. 93).
From [?], a partially nested Archimedean copula C with two nesting

levels and d0 child copulas (PNAC(2, d0, d)), is given by

C(u) = C0

(
C1(u1), . . . , Cd0(ud0)

)
, u = (u1, . . . ,ud0)

T , (2.3)

where each copula Cj, j ∈ {0, . . . , d0}, is Archimedean with generator
ψj, that is,

Cj(uj) = ψj

(
ψ−1j (uj1) + · · ·+ ψ−1j (ujdj)

)
= ψj

(
tj(uj)

)
, (2.4)
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where tj(uj) =
∑dj

k=1 ψ
−1
j (ujk), ψj : [0,∞] → [0, 1] is continuous and

ψ̇0i(x) := ψ−10 (ψi(x)) ∈, i = 1, . . . , d0, satisfy the following assump-
tions.
Assumption 1: For s = 1, . . . , d0

(1) ψ0 and ψs(x) are completely monotone;

(2) ψ̇0i(x) ∈ ~∞ = {ψ;ψ(0) = 0, ψ(∞) = ∞, (−1)j−1ψ(j) ≥ 0, j ≥
1};

(3) ψ0 and ψs(x) satisfy the boundary conditions of an Archimedean
copula generator.

Rezapour [10] shows that if the generators of the PNAC(2, d0, d)
satisfy the following assumptions, then it is steel a copula. These con-
ditions are weaker than those proposed in Assumption 2. Relaxing the
condition on the generators of the Archimedean copula results in an
increase in the number of PNAC(2, d0, d) and this, in turn, provides
more distribution functions for modeling data sets.
Assumption 2: For s = 1, . . . , d0

(1) ψ0 is d-monotone and ψs are ds-monotone;

(2) ψ̇0s(x) ∈ ~ds , where

~k = {ψ;ψ(0) = 0, ψ(∞) =∞, (−1)j−1ψ(j) ≥ 0, 1 ≤ j ≤ k − 2, ψ(k−2)

is increasing and concave};

(3) ψ0 and ψs(x) satisfy the boundary conditions of an Archimedean
copula generator.

The density function of a PNAC(2, d0, d), when ψ0 is a m-monotone
function, m ≥ d+ 1 was obtained in [10] as

c(u) =

d0∏
i=1

di∏
j=1

(ψ−1i )′(uij)
∑

ki∈{1,...,di}
i=1,...,d0

d0∏
s=1

as,dsks(ts(us))ψ
(k∗d0

)

0

( d0∑
s=1

ψ̇0s(ts(us))
)
,(2.5)

where k∗d0 = k1 + · · ·+ kd0 ,

as,nk(ts(us)) =
∑

j∈Pn,k

(
n

j1, . . . , jn−k+1

) n−k+1∏
l=1

(
ψ̇

(l)
0s (ts(us))

l!

)jl
,

Pn,k = {j ∈ Nn−k+1
0 :

n−k+1∑
i=1

iji = d and
n−k+1∑
i=1

ji = k} .

For the sake of brevity we will solely concentrate on the case d0 = 2, but
extensions to the general d0 child copulas setting are straightforward.
Now suppose that u = (u1,u2), and ui = (ui1, . . . , uidi), i = 1, 2, and



28 REZAPOUR, M.

consider the partially nested Archimedean copula with an m-monotone
generator ψ such that (m > d1 + d2 + 1), i.e.

C(u) =

∫ ∞
ψ̇02(t1(u1))+ψ̇02(t2(u2))

(
1− ψ̇01(t1(u1)) + ψ̇02(t2(u2))

t

)n−1
dFR0(t) ,(2.6)

By (2.5), the corresponding density function equals

c(u) =
2∏
i=1

di∏
j=1

(ψ−1i )′(uij)

d1∑
k1=1

d2∑
k2=1

2∏
l=1

Bdl,kl(ψ̇0l(tl(ul)))

ψ
(k1+k2)
0

(
ψ̇01(t1(u1)) + ψ̇02(t2(u2))

)
.
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