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Constructing a generalized family of dependent bivariate distributions

Amini, M. , Dolati, A. and Mirhoseini S.M.

Department of Statistics, Ferdowsi University of Mashhad, Meshhad, Iran,

Department of Statistics, Faculty of Mathematics, Yazd University, Yazd, Iran,

Abstract A generalized family of bivariate distribution functions is constructed by a stochastic mix-
ture of the order and record statistics of a sample of size two, Generalized Linear means method and The
Ruschendorf Method. Various properties of the proposed models are studied. Also, dependence structure
and formulas for dependence measures are given via the copula of these distributions.

Keywords Copula function, Ordered Statistics, record Statistics, Associated Measures .

1 Introduction

The various ways to construct a bivariate distributions have been investigated by authors. One of the
most popular bivariate distributions is The FGM distribution that has been studied by Farli (1960), Gum-
bel (1960) and Morgensten (1956). Also, the FGM family generalized by many authors for example,Lai
and Xie (2000), Fischer and Klein (2007),Sarmanov (1960), Lallena and Flores (2004),uang and Kotz
(1999),Bairamov and Kotz (2002), Baker (2008),Dolati, Mirhoseini and Amini (2011) and Amblard and
Girard (2009). Constructing of the bivariate FGM based on stochastic mixture method studied by Baker
(2008). Noting that, for continuous marginals distribution functions Pearson correlation in the FGM is
restricted to [− 1

3 ,
1
3 ]. Many authors, generalized the FGM distribution for increase of the limit of Pearson

correlation and have been studied the dependence structure it. There are several of new approach to
the construction of bivariate distributions, for instance, Baker, (2008), Lin and Huang, (2000), Dolati,
Mirhoseini, and Amini (2011).
This paper is organized as follows: In Section 2, we introduce a generalized family of bivariate dis-
tributions. Dependence structure of generalized models is studied, also, some concepts of dependence
stochastic orders for these bivariate distribution are derived. We apply the stochastic mixture method
based on order and record statistics for constructing some sub-families of proposed model in Section 3.
Moreover, in view of the Ruschendorf Method we derive some sub-families, particularly the family studied
by Lallena and Flores (2004). The generalized linear means method introduced by Klein and Christa
(2012) evaluate finally.

2 Generalized bivariate distribution

The approaches here allows construction of extended bivariate distribution functions as:

H(x, y) = F (x).G(y) +Wθ(F (x), G(y)), (1)

where θ is suitable parameter such that H(x, y) is a distribution function and W (x, y) satisfying the
following conditions for all x, y ∈ [0, 1]:

• W (x, y) ≥ 0.

• W (x, 0) =W (0, y) = 0.

• W 12(x, y) ≥ −1, W 1(x, 1) ≥ −1 and W 2(1, y) ≥ −1.

•
∫ 1

0

∫ 1

0
W 12(x, y)dxdy = 0.
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Where W 12(x, y) = ∂2W (x,y)
∂x∂y , W 1(x, y) = ∂W (x,1)

∂x and W 2(x, y) = ∂W (1,y)
∂y . The suitable functions that

satisfy in the above conditions called kernel functions. In addition, θ is a parameter that shows dependence
structure of H(x, y) and θ = 0, leads to the independence of X and Y . Also, It is easy to check that the
marginal distributions, joint density function and marginal density function of Model (1) are as follows
respectively:

H1(x) = F (x) +Wθ(F (x), 1), H2(x) = G(y) +Wθ(1, G(y)).

h(x, y) = f(x).g(y)[1 +W 12
θ (F (x), G(y))],

h1(x) = f(x)[1 +W 1
θ (F (x), 1)]

and
h2(y) = g(y)[1 +W 2

θ (1, G(y))].

The conditional density functions Y |X = x and X|Y = y are as follow respectively:

h(y|x) = 1 +W 12
θ (F (x), G(y))

1 +W 1
θ (F (x), 1)

.g(y)

and

h(x|y) = 1 +W 12
θ (F (x), G(y))

1 +W 1
θ (1, G(y))

.f(x).

Also, the joint survival function obtain as:

H(x, y) = P [X > x, Y > y]

= F (x)G(y)−Wθ(F (x), 1)−Wθ(1, G(y)) +Wθ(F (x), G(y)).
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Copula function
assuming ψ1(t) = t+Wθ(t, 1) and ψ2(t) = t+Wθ(1, t), the copula corresponding to the model given in
(1)obtain as:

C(ψ1(u), ψ2(v)) = uv +Wθ(u, v), u, v ∈ [0, 1].

2.1 Some Concepts of Dependence

Let X and Y be two random variables with joint distribution (density) function H(x, y) (h(x, y)) and
marginals H1(x) and H2(y) respectively. Several concepts of positive(negative) dependence and depen-
dence stochastic orders have been introduced in literatures. We recall some this concepts and then, we
study dependence structure of family given in (1).
The random variables X and Y are said to be:

• Positive likelihood ratio dependent (PLRD(X,Y )) if h(x, y) is total positive of order two (TP2)
means, for all x1 ≤ x2, y1 ≤ y2

h(x1, y1)h(x2, y2)− h(x1, y2)h(x2, y1) ≥ 0.

• Negative likelihood ratio dependent (NLRD(X,Y )) if h(x, y) is Rivers regular of order two (RR2),
means, for all x1 ≤ x2, y1 ≤ y2

h(x1, y1)h(x2, y2)− h(x1, y2)h(x2, y1) ≤ 0.

• Stochastically decreasing (increasing) SD(Y |X)(SI(Y |X)) if P [Y > y|X = x] is non-increasing(non-
decreasing) in x for all y.

• Left corner set decreasing(increasing) LCSD(X,Y )(LCSI(X,Y )) if P [X ≤ x, Y ≤ y|X ≤ t, Y ≤ s]
is non-increasing(non-decreasing) in t and s for all x and y.

• Let (X1, X2) and (Y1, Y2) be two random vectors with respective distribution functions F (t, s) and
G(t, s) belong to Frechet class of all bivariate distributions with the univariate marginals F1, F2.
We say that (X1, X2) smaller than (Y1, Y2) in the lower orthant decreasing ratio order (denoted by
(X1, X2) ≤lodr (Y1, Y2) or F ≤lodr G) if

G(t, s)

F (t, s)
is decreasing in (t, s) ∈ {(t, s) : G(t, s) > 0}.

Nothing that, for a parametric family of bivariate distributions Hθ(x, y) we have
Hθ1 ≤lodr Hθ2 for all θ1 ≤ θ2 if

Hθ2(t, s)

Hθ1(t, s)
is increasing in (t, s).

i) If 1+W 12
θ (x, y) is TP2(RR2), then h(x, y) is TP2(RR2), consequently we have PLRD(X,Y )(NLRD(X,Y ))

respectively.

ii) Let x1 ≤ x2, y1 ≤ y2 and x1Wθ(x2, y) = x2Wθ(x1, y) or y1Wθ(x, y2) = y2Wθ(x, y1) for all
x, y ∈ (0, 1). Then Wθ(x, y) is TP2(RR2) if and only if Hθ(x, y) TP2(RR2) consequently we have
LCSD(X,Y )(LCSI(X,Y )).

iii) If for all t ∈ R,
G(t)+W 1

θ (F (x),G(t))

1+W 1
θ (F (x),1))

, increasing (decreasing) in x, then NRD(Y |X)(PRD(Y |X)).

Similarly,
F (t)+W 2

θ (F (t),G(y))

1+W 2
θ (1,G(y))

, increasing (decreasing) in y, then SD(X|Y )(SI(X|Y )).

i) The bivariate distributions family generated by
Wθ(x, y) = θxy(1 − x)(1 − y), having to positive (negative) dependence structure if and only if
0 ≤ θ ≤ 1(−1 ≤ θ ≤ 0).
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ii) The bivariate distributions family generated by Wθ(x, y) = x.y(θ(2 − x − y) + (1 − x)(1 − y)),
having to positive dependence structure if and only if 0 ≤ θ ≤ 1.

iii) The bivariate distributions family generated by Wθ(x, y) = xy(θ(y − x) − (1 − x)(1 − y)), having
to negative dependence structure if and only if 0 ≤ θ ≤ 1.

Let Hθ(x, y) = F (x)G(y) + θW (F (x), G(y)), and W (x, y) be decreasing in x, y. Then for all 0 ≤ θ1 <
θ2 ≤ 1,

Hθ1 ⪯lodr Hθ2 .

Proof. Let θ1 < θ2 and (x1, x2) ≺ (y1, y2) (i.e. xi < yi, i = 1, 2), we obtain

Hθ1(x1, x2).Hθ2(y1, y2)−Hθ1(y1, y2).Hθ2(x1, x2)

= (θ2 − θ1)[F (x1)G(x2)W (F (y1), G(y2))− F (y1)G(y2)W (F (x1), G(x2))] ≤ 0,

In Particulate if W (x, y) = xyψ(x, y), then for all θ1 < θ2,

Hθ1 ⪯lodr Hθ2 ⇐⇒ ψ(x, y) ↘ in x, y,

2.2 Measures of Association

In this section, we compute four measures of association, Kendall’s tau, Spearman’s rho, tail dependence
coefficients and extremal dependence coefficients for family given (1). Let H(x, y) be a absolutely
continuous bivariate distribution whit margins H1(x) and H2(y), then∫ ∫

H(x, y)dH(x, y) =
1

2
−
∫ ∫

∂H(x, y)

∂x
.
∂H(x, y)

∂y
dxdy.

Let X and Y be a random variables with joint distribution H(x, y), margins H1(x) and H2(y) respec-
tively,then

τ = 4

∫ ∫
H(x, y)dH(x, y)− 1

= 1− 4

∫ ∫
∂H(x, y)

∂x
.
∂H(x, y)

∂y
dxdy.

and

ρs = 12

∫ ∫
H(x, y)dHI(x, y)− 3

= 12

∫ ∫
HI(x, y)dH(x, y)− 3.

Moreover, applying Lemma 1, we can derive another formula for ρs as:

ρs = 3− 6

∫ ∫
[
∂H(x, y)

∂x
.
∂HI(x, y)

∂y
+
∂HI(x, y)

∂x
.
∂H(x, y)

∂y
]dxdy.

Where, HI(x, y) = H1(x).H2(y). Let H(x, y) be a bivariate distribution given as (1). Then
i)

τ(θ) = 4

∫ 1

0

∫ 1

0

[Wθ(x, y) + xy.W 12
θ (x, y) +Wθ(x, y).W

12
θ (x, y)]dxdy

= −4

∫ 1

0

∫ 1

0

[x.W 1
θ (x, y) + y.W 2

θ (x, y) +W 1
θ (x, y).W

2
θ (x, y)]dxdy.
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ii)

ρs(θ) = 12

∫ 1

0

∫ 1

0

[(x+Wθ(x, 1))(y +Wθ(1, y))(1 +W 12
θ (x, y))]dxdy − 3

= 12

∫ 1

0

∫ 1

0

[(xy +Wθ(x, y))(1 +W 2
θ (1, y))(1 +W 1

θ (x, 1))]dxdy − 3.

Moreover, another formula for ρs is as:

ρs(θ) = 3 − 6

∫ 1

0

∫ 1

0

[x+W 2
θ (x, y)][1 +W 1

θ (x, 1)][y +Wθ(1, y)]dxdy

− 6

∫ 1

0

∫ 1

0

[y +W 1
θ (x, y)][1 +W 2

θ (1, y)][x+Wθ(x, 1)]dxdy.

For many families of bivariate distributions, that exhibit weak dependence, the sample value of Spear-
man’s rho is about 50 percent larger than the sample value of Kendall’s tau. Fredricks and Nelsen

(2007)showed that for the population versions of these statistics, the ration of ρs(θ)τ(θ) approaches 3
2 as the

joint distribution approaches that of two independent random variables. We also, derive the direction
of inequality between 3τ and 2ρs for the family of bivariate distribution given as (1), under some suit-
able conditions on Wθ(x, y). Let H(x, y) be an absolutely continuous bivariate distribution given as (1).
Suppose that, for all x, y ∈ [0, 1],

A(x, y) =Wθ(x, y)− y.Wθ(x, 1)− x.Wθ(1, y)−Wθ(x, 1)Wθ(1, y) ̸= 0.

i) If ∂
2 ln |A(x,y)|
∂x∂y ≥ 0 then 2ρ ≤ 3τ.

ii) If ∂
2 ln |A(x,y)|
∂x∂y ≤ 0 then 2ρ ≥ 3τ.

ii) If ∂
2 ln |A(x,y)|
∂x∂y = 0 then 2ρ = 3τ.

Proof. Using various forms for τ and ρ given in Proposition 4, we have∫ ∫
R2

[H(x, y)
∂2H(x, y)

∂x.∂y
− ∂H(x, y)

∂x

∂H(x, y)

∂y
]dxdy =

τ

2
,

and ∫ ∫
R2

[HI(x, y)
∂2H(x, y)

∂x.∂y
+H(x, y)− ∂H(x, y)

∂x

∂HI(x, y)

∂y
− ∂HI(x, y)

∂x

∂H(x, y)

∂y
]dxdy =

ρs
3
.

So, elementary calculus yield,

τ

2
− ρ

3
=

∫ ∫
R2

(H(x, y)−HI(x, y))2
∂2 ln(H(x, y)−HI(x, y))

∂x∂y
dxdy

=

∫ 1

0

∫ 1

0

A2(x, y)
∂2 lnA(x, y)

∂x∂y
dxdy.

This complete the proof.

If A(x, y) = θϕ(x)ψ(y), then ∂2 ln |A(x,y)|
∂x∂y = 0 so 2ρ = 3τ. An alternate proof of Daniel’s in-

equality between ρs and τ , as −1 ≤ 3τ − 2ρ ≤ 1, given in Theorem 5.1.10 of Nelsen (2006). If

− 1
12 ≤

∫ 1

0

∫ 1

0
B(x, y)dxdy ≤ 1

12 . Where for all x, y ∈ [0, 1],

B(x, y) = [W (x, 1) +W 2(1, y) +W 2(1, y)−W 2(x, y)]

× [W (1, y) +W 1(x, 1) +W 1(x, 1)−W 1(x, y)].
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Then −1 ≤ 3τ − 2ρ ≤ 1. Applying formulas of ρ and τ in proposition 4, it is easy to show that∫ ∫
R2

[
∂HI(x, y)

∂x
− ∂H(x, y)

∂x
].[
∂HI(x, y)

∂y

∂H(x, y)

∂x
]dxdy =

∫ 1

0

∫ 1

0

B(x, y)dxdy

=
2ρ− 3τ

12
.

Tail dependence coefficients Another dependence coefficient is tail dependence, which measures
the dependence between the variables in the upper-right quadrant and in the lower-left quadrant of
I2 = [0, 1] × [0, 1]. Let (X,Y ) be a random vector with joint distribution function H and marginals H1

and H2. The quantity

λu = lim
t→1−

P (H2(X) > t|H1(Y ) > t)

= lim
t→1−

Ĉ(t, t)

1− t

= 1− lim
t→1−

t− C(t, t)

1− t
,

is called the upper tail dependence coefficient (UTDC) provided the limit exists. We say that (X,Y ) has
upper tail dependence if λu > 0 and upper tail independent if λu = 0. Similarly, we define the lower tail
dependence coefficient (LTDC) by

λl = lim
t→0+

P (H2(X) ≤ t|H1(Y ) ≤ t) = lim
t→0+

C(t, t)

t
.

For more details, see Coles et al. (1999). If Wθ(x, y) = θxyψ(x, y), Then λl = λu = 0.

Proof. Set ϕ−1
1 (u) = u+ θuψ(t, 1), ϕ−1

2 (u) = u+ θuψ(1, t), we obtain

C(u, v) = ϕ−1
1 (u)ϕ−1

2 (u)[1 + θψ(ϕ−1
1 (u), ϕ−1

2 (u))],

Now Simple calculation complete the proof.

3 Sub-families and examples

The corresponding sub-families and examples of bivariate distributions in each case studied in this section.
A well-known limitation to the family given in (1) is that it dose not allow the modelling of large
dependences since the maximum Pearson correlation is not achieve to 1. Based on this remark, several
generalization of W (x, y) have been introduced by researchers in recent years that given some of them in
the following.

• One of the most popular parametric family bivariate distributions is the Farlie-Gumbel-Morgenstern
(FGM) family defined when Wθ(x, y) = θ.xy[1 − x][1 − y]. This family of bivariate distribution
discussed by Morgenstren (1956), Farlie (1960) and Gumbel (1958). In this family of bivariate
distribution ρ = 2

9θ and ρs =
θ
3 .

• If Wθ(x, y) = θφ(x)ψ(y), where φ and ψ are functions defined on I = [0, 1], such that satisfy in
the Lipschitz condition and φ(0) = φ(1) = ψ(0) = ψ(1) = 0. The family of bivariate distributions
generated by Wθ(x, y) introduced Sarmanov (1960) and re-discovered by Lallena and Flores (2004).

• If Wθ(x, y) = θ(xy)p[(1− x)(1− y)]q, where p, q > 1. The family of distributions generated by this
function studied in Lai and Xie (2000).
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• The kernel extensions of FGM are studied by Huang and Kotz (1999), if Wθ(x, y) = θ(xy)[(1 −
x)(1 − y)]q for q ≥ 1 and Wθ(x, y) = θ(xy)[(1 − xq)(1 − yq)] for q ≥ 1

2 . It is proved that positive
correlation can be increased up to approximatively 0.39 while the maximal negative correlation
remains −1/3.

• Amblard and Girard (2009) considered the family of functions defined on I2 as follow:

Cθ,φ(u, v) = uv + θ[max{u, v}]φ(u)φ(v),

where θ and φ satisfy in suitable conditions, such that this function was a copula.They Studied
dependence structure the family of distribution generated by this copula function.

• If Wθ(x, y) = (1 − θ)x.y + θ
n

∑n
k=1[

∑n
j=k C

k
nx

j(1 − x)n−j .
∑n
j=k C

k
ny

j(1 − y)n−j ], for all θ ∈ [0, 1],
then we obtain the bivariate distributions family with positive dependent structure introduced by
Baker (2008). In particular, if

Wθ(x, y) = (1− θ)x.y +
θ

n
[xn(1− (1− y)n) + yn(1− (1− x)n)]

we get a bivariate distributions family induced by mixture of (X,Y ) with (X(1), Y(n)) and (Y(1), X(n)).

• Lin and Huang (2010) investigated Baker’s bivariate distributions with fixed margins which are
based on order statistics and found conditions under which the correlation converges to the maxi-
mum for Frchet-Hoeffding upper bound as the sample size tends to infinity.

• Another extension of FGM family introduced by Lallena (1992) and extensively studied by Amblard
and Girard (2002, 2005), if Wθ(x, y) = θϕ(x)ϕ(y). They proved that for properly chosen function
ϕ(.), the range of the correlation coefficient is extended to [− 3

4 ,
3
4 ].

4 Order Statistics Based Method

Baker (2008), proposed a new characterization of the bivariate FGM distribution based on order statistics
as follows:

(V1, V2) =

{
(X(2), Y(2)) with, p. 1

2
(X(1), Y(1)) with, p. 1

2

It is easy to show that (V1, V2) ∼ FGM(1). Also if we define,

(U1, U2) =

{
(X(1), Y(2)) with,p. 1

2
(X(2), Y(1)) with,p. 1

2

then, we can check that (U1, U2) ∼ FGM(−1). Combining the above statements we obtain,

H(x, y) = FGM(θ) =
1 + θ

2
FGM(1) +

1− θ

2
FGM(−1).

where −1 ≤ θ ≤ 1.
Several statistician have tried to extend the FGM distribution to allow large correlation, for instance:
Huang and Kotz(1999), Bairamov et al. (2001), Amblard and Girard(2009), Fisher and Klein(2007),
Baker (2008), Praha and Kotz (2010), Mirhoseini et al. (2011) and Klein and Cheista (2012). In this
section, we derived some new versions of Wθ(x, y) for all x, y ∈ [0, 1] constructed using mixture of order
statistics. Also, we studied distribution functions, copula. Spearman and Kendall correlations and some
dependence ordering.
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5 Record Statistics Based Method

Let X and Y be independent random variables with distribution functions F and G respectively. It is
well-known that, the distribution function for lower record and upper record of a random sample of X
and Y is as: Let X1 and X2, Y1 and Y2 be two sample of X and Y respectively. Define

FL2
(x) = F (x) + F (x).H(x), and FU2

(x) = F (x)− F̄ (x)R(x),

where H(x) = − ln(F (x)) and R(x) = − ln(F̄ (x)). The corresponding quantities for random variable Y
denoted by H(y) and R(y).
In this section discussed some bivariate distributions constructed using mixture of recorded statistics.
Also, we obtained distribution functions, copula, Spearman and Kendall correlations and some depen-
dence ordering.

6 The Ruschendorf Method

Ruschendorf (1985) developed a method as follow: Let f1(x, y) has its integral to be zero on the unit
square,as well as its two marginals integrate to zero, i.e.∫

I

f1(x, y)dxdy = 0,

∫ 1

0

f1(x, y)dx =

∫ 1

0

f1(x, y)dy = 0.

In that case 1+ f1(x, y) is a density of a copula. There is however a constraint, namely that 1+ f1(x, y)
must be positive. If it is not the case, but f1 is bounded, one can then find a constant θ such that
1 + θ.f1(x, y) is positive.It is easy to construct a function f1(x, y) as:
Step 1. Select an arbitrary real integrable function f on the unit square with its marginals being uniform,
and computes:

A =

∫
I

f(x, y)dxdy, f1(x) =

∫ 1

0

f(x, y)dy, f2(y) =

∫ 1

0

f(x, y)dx.

Step 2- Put f1(x, y) = f(x, y) +A− f1(x)− f2(y).

Let f(x, y) = ϕ1(x)ϕ2(y), such that ϕ1(x) and ϕ2(y) are bounded, we obtain

c(x, y) = 1 + θ[ϕ1(x)− (Φ1(1)− Φ1(0))][ϕ2(x)− (Φ2(1)− Φ2(0))],

and
C(x, y) = x.y + θψ(x, y)

where, Φi(x) =
∫ x
0
ϕ(t)dt, i = 1, 2. and

ψ(x, y) = [Φ1(x)− Φ1(0)− x(Φ1(1)− Φ1(0))][Φ2(x)− Φ2(0)− y(Φ2(1)− Φ2(0))]

1- If Φi(x), i = 1, 2 are decreasing, then the admissible region of θ is:

θ ≥ −[ϕ1(1)− (Φ1(1)− Φ1(0))]
−1[ϕ2(1)− (Φ2(1)− Φ2(0))]

−1.

2- If least one of Φ1(x) or Φ2(x) are increasing, then the admissible region of θ is:
θ ≥ −max{θ1, θ2}. where

θ1 = [ϕ1(0)− (Φ1(1)− Φ1(0))]
−1[ϕ2(1)− (Φ2(1)− Φ2(0))]

−1,

and
θ2 = [ϕ1(1)− (Φ1(1)− Φ1(0))]

−1[ϕ2(0)− (Φ2(1)− Φ2(0))]
−1.

Noting that this family is a member of the family of Lallena (1992), with

ϕ(x) = [Φ1(x)− Φ1(0)− x(Φ1(1)− Φ1(0))]
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and
ψ(x) = [Φ2(x)− Φ2(0)− y(Φ2(1)− Φ2(0))],

It is obvious that ϕ(1) = ϕ(0) = ψ(1) = ψ(0) = 0. So, using Proposition 6 we obtain ∂2 ln(A(x,y))
∂x∂y =

∂2 ln(θϕ(x).ψ(y))
∂x∂y = 0, consequently 2ρs = 3τ .

1- If f(x, y) = xiyj , i, j ≥ 1, x, y ∈ [0, 1]. Then, we derive

c(x, y) = 1 + θ(xi − 1

i+ 1
)(yj − 1

j + 1
),

and

C(x, y) = xy + θ
xy

(i+ 1)(j + 1)
.(xi − 1)(yj − 1),

where 0 ≤ θ ≤ min{ (i+1)(j+1)
i , (i+1)(j+1)

j } ≤ 1. This is known as family of bivariate distributions Hung

and Kotz (1999) if i = j = q.
Ruschendorf (1985), using the function f(x, y) = xiyj , i, j ≥ 1, x, y ∈ [0, 1] generated polynomial
copula of power m as follows:

C(x, y) = xy[1 +

i+j≤m−2∑
i≥1,j≥1

θij
(i+ 1)(j + 1)

(xi − 1)(yj − 1)],

where

0 ≤ θ ≤ min{
∑

i≥1,j≥1

θij
i

(i+ 1)(j + 1)
,
∑

i≥1,j≥1

θij
j

(i+ 1)(j + 1)
}.

In particular, if i = j = 1 we derive the family of bivariate distributions FGM+(θ).
2- If f(x, y) = e−ixe−jy, Then, we obtain

c(x, y) = 1 + θ[e−ix − 1− e−i

i
][e−jy − 1− e−j

j
],

and

C(x, y) = xy +
θ

ij
[1− e−ix − x(1− e−i)][1− e−jy − y(1− e−j)],

where

−1 ≤ max{−Aij ,−Bij} ≤ θ ≤ Bij ≤ 1,

Aij =
ij

[(i+ 1)e−i − 1][(j + 1)e−j − 1]

and

Bij =
ij

[i− 2 + (i+ 2)e−i][j − 2 + (j + 2)e−j ]
.

3-If f(x, y) = ϕ(x) + ψ(y), where ϕ(x) and ψ(y) are bounded and satisfy in suitable conditions, then we
obtain the independence copula i.e.C(x, y) = Π(x, y) = x.y.
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A new class of positive dependent bivariate copula and its properties
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Abstract

We propose to give up the polynomial form to work with a semi parametric family of copulas. The
induced parametric families of copulas are generated as simply as Archimedean copulas, that is by a
univariate function.This new class covers Farlie-Gumbel-Morgenstern and Gumbell-Barnnet copulas.
Also, seeing that, the domain of correlation Farlie-Gumbel-Morgenstern copula has been limited,
it attempts to study values of dependence and asserts that these extending families of copula are
used in accordance modeling with high postive dependence. Furthermore, dependence properties of
copulas with polynomial sections are preserved and the dependence degree can be increased without
significantly complexifying the model

Keywords: Copulas, semiparametric family, Farlie–Gumbel–Morgenstern copula, measures of asso-
ciation, positive dependence

1 Introduction

Copulas are functions that join or “couple” joint distribution functions to their one-dimensional marginal
distribution functions. Alternatively, copulas are joint distribution functions whose one-dimensional
margins are uniform on the interval (0, 1].

Copulas are of interest to statisticians for two main reasons: Firstly, as a way of studying scale-
free measures of dependence; and secondly, as a starting point for constructing families of bivariate
distributions, sometimes with a view to simulation. The recent book by R.B. Nelsen is an important
monograph about copulas. As for the relationship with problems of given marginals, it can be seen
[Benes, and Stepan (1997), Cuadras, et. al. (2002), Joe (1997)].

Several families of copulas, such as Archimedean copulas [Coles,Currie,and Tawn (1999)] or copulas
with polynomial sections [Nelsen et. al.(1997) and Quesada-Molina et. al. (1995)] have been proposed.
In [Nelsen et. al. (1997)], the authors point out that the copulas with quadratic section proposed
in [Quesada-Molina et. al. (1995)] are not able to modelize large dependences. Then, they introduce
copulas with cubic sections and conclude that copulas with higher order polynomial section would increase
the dependence degrees but simultaneously the complexity of the model. We propose to give up the
polynomial form to work with a semi parametric family of copulas. The induced parametric families of
copulas are generated as simply as Archimedean copulas, that is by an univariate function. Furthermore,
dependence properties of copulas with polynomial sections are preserved and the dependence degree can
be increased without significantly complexifying the model. Note that, in Ferguson (1995), a class of
symmetric bivariate copulas with wide correlation coefficients range is introduced, but these copulas are
less convenient to perform classical calculations on a probability law than the copulas studied here.

One of the most popular parametric families of copulas, that studied in Farlie (1960), Gumbel (1960),
and Morgenstern (1956), is the Farlie-Gumbel-Morgenstern (FGM) family that defined by

CFGM (u, v) = uv(1 + θ(1− u)(1− v)), θ ∈ [−1, 1]

and the FGM copula density is provided by

cFGM (u, v) = (1 + θ(2u− 1)(2v − 1)), θ ∈ [−1, 1]

These are the only copulas whose functional form is a polynomial quadratic in u and in v. They are
commonly denoted FGM copulas. Members of the FGM family are symmetric, i.e., Cθ(u, v) = Cθ(v, u)
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for all (u, v) in I2. An alternative approach to generalize the FGM family of copulas is to consider the
semi-parametric family of symmetric copulas defined by

CRL(u, v) = uv + θΘ(u)Θ(v), θ ∈ [−1, 1]

It was first introduced in Rodriguez-Lallena (1992), and extensively studied in Amblard and Girard
(2002, 2005). Kim and Sungur (2004) utilized the FGM family to models involved censoring. Durante
and Jaworski (2009) analyzed the structure of the FGM distribution with gamma marginals and discussed
the various parameterizations of the FGM family. Kim et al. (2011) proposed a new class of bivariate
copula to quantify dependence and incorporate into various iterated copula families. A pair (X,Y ) of
random variables is said to be exchangeable if the vectors (X,Y ) and (Y,X) are identically distributed.
For identically distributed continuous random variables, exchangeability is equivalent to the symmetry
of the copula.

In this paper, we propose to give up the polynomial form to work with a semi parametric family of
copulas. In Section 2, the semi parametric family is defined and its basic properties are derived. Properties
of measures of association are investigated in Section 3. Section 4 is devoted to the dependence structure
and the dependence ordering of the family. Finally the results of this research carried out in section 5.

2 new class of bivariate copula

Throughout this paper, we note I = [0, 1]. A bivariate copula defined on the unit square I2 is a bivariate
cumulative distribution function with univariate uniform margins. Equivalently, C must satisfy the
following properties:

(P1) C(u, 0) = C(0, v) = 0, for every u, v in I,

(P2) C(u, 1) = u and C(1, v) = v, for every u, v in I,

(P3) For every u1, v1, u2, v2 in I such that u1 ≤ u2 and v1 ≤ v2,

∆(u1, v1, u2, v2) = C(u2, v2)− C(u2, v1)− C(u1v2) + C(u1, v1) ≥ 0

We consider the semi parametric family of functions defined on I2 by

CΦ,Ψ
θ (u, v) = uveθΦ(u)Ψ(v) (1)

for some parameter θ, where Φ and Ψ are a differentiable function on I. Let us note first that, the
independent copula CΦ,Ψ

0 (u, v) = uv belongs to any parametric family {CΦ,Ψ
θ } generated by a functions

Φ and Ψ. Second, the functions Φ and −Φ or Ψ and −Ψ clearly define the same functions. The function
Φ and Ψ plays a role similar to the generating function in Archimedean copulas [Genest and MacKay
(1986)]. The next theorem gives sufficient and necessary conditions on Φ , Ψ, and θ to ensure that

CΦ,Ψ
θ (u, v) is a copula.

Theorem1. CΦ,Ψ
θ (u, v) is a copula if and only if Φ and Ψ satisfies the following conditions:

A1. Φ(1) = 0 or Ψ(1) = 0,

A2. [1 + θuΦ́(u)Ψ(v)][1 + θvΦ(u)Ψ́(v)] + θuvΦ́(u)Ψ́(v) ≥ 0,

A3. θ ≥ −min
{
[Φ́(1)Ψ(0)]−1, [Φ́(1)Ψ́(1)]−1

}
.

Proof: The proof involves three steps.

1. It is clear that (P2)⇐⇒ (A1).

2. We show that (P3)⇐⇒ (B1). In this case, for all u,u1,v, and v1 in I such that u1 > u and v1 > v, and

∆(u, u1, v, v1) can be written as

∆(u, u1, v, v1) = v1

[
u1e

θΦ(u1)Ψ(v1) − ueθΦ(u)Ψ(v1)
]
− v

[
u1e

θΦ(u1)Ψ(v) − ueθΦ(u)Ψ(v)
]

and thus ∆(u, u1, v, v1) ≥ 0 implies
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v
[
u1e

θΦ(u1)Ψ(v) − ueθΦ(u)Ψ(v)
]

v1
[
u1eθΦ(u1)Ψ(v1) − ueθΦ(u)Ψ(v1)

] ≤ 1 (2)

multiplying and divide (2) by u1 − u and letting u1 −→ u, we have

v1

[
∂

∂u
ueθΦ(u)Ψ(v)

]
− v

[
∂

∂u
ueθΦ(u)Ψ(v)

]
≥ 0

Divided both side by v1 − v and letting v1 −→ v in the previous inequality yields (A2) as follows:

∂2

∂u∂v
uveθΦ(u)Ψ(v) = eθΦ(u)Ψ(v) {[1 + θuΦ́(u)Ψ(v)][1 + θvΦ(u)Ψ́(v)] + θuvΦ́(u)Ψ́(v)} ≥ 0 (3)

3. To determine the admissible range of θ it is sufficient to determine the range of values of θ for which
the density is nonnegative. For the density (3), the overall constraint on θ is given by

cΦ,Ψθ (u, v) =
∂2

∂u∂v
CΦ,Ψ
θ (u, v) =

∂2

∂u∂v
uveθΦ(u)Ψ(v) ≥ 0

Thus the range of θ arises from:

I: When u = v = 1, since Φ(1) = 0 and Ψ(1) = 0, then 1 + θΦ́(1)Ψ́(1) ≥ 0. Thus θ ≥ − [Φ́(1)Ψ́(1)]
−1

.
II: When u = 1 and v = 0 or u = 0 and v = 1, then 1 + θΦ́(1)Ψ(0) ≥ 0. Thus θ ≥ −[Φ́(1)Ψ(0)]−1.
Therefore, the admissible range of θ is

θ ≥ −min
{
[Φ́(1)Ψ(0)]−1, [Φ́(1)Ψ́(1)]−1

}
Corollary 2.1 Under assumption of the Theorem 1, if Φ(x) = Ψ(x) = Ω(x) then generate parametric
families of copulas as

CΩ
θ (u, v) = uveθΩ(u)Ω(v)

where CΩ
θ (u, v) if and only if Ω satisfies the following conditions:

B1. Ω(1) = 0,
B2. [1 + θuΏ(u)Ω(v)][1 + θvΩ(u)Ώ(v)] + θuvΏ(u)Ώ(v) ≥ 0,
B3. θ ≥ −min

{
[Ώ(1)Ω(0)]−1, [Ώ(1)]−2

}
.

Corollary 2.2 Under assumption of the Theorem 1, The novel family (1) has the following extension to
a (2d − d− 1)-parameter family of d-copulas, d ≥ 3:

CΦ,Ψ
θ (u1, u2, ..., ud) =

[
d
i=1ui

]
e
∑d

k=2

∑
1≤j1<j2<...<jk≤d θj1j2...jk

Φ(uj1)Ψ(vj1)Φ(uj2)Ψ(vj2)...Φ(ujk)Ψ(vjk)

Corollary 2.3 The log-likelihood function for the parameter given set of observed pairs, is given by

ln (θ|u, v) =
∑
i

log cΦ,Ψθ (ui, vi)

where cΦ,Ψθ (ui, vi) is the density function of the distribution function CΦ,Ψ
θ (ui, vi). The maximum likeli-

hood estimators are obtained by maximizing. Then, we have,

∂

∂θ
ln (θ|u, v) = 0

equivalently

Aθ̂2 +Bθ̂ + C = 0 (4)
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where

A =
∑
i

uiviΦ
2(ui)Ψ

2(vi)Φ́(ui)Ψ́(vi)

B =
∑
i

uiviΦ(ui)Ψ(vi) [uiΦ́(ui)Ψ(vi) + viΦ(ui)Ψ́(vi) + 3uiviΦ́(ui)Ψ́(vi)]

C =
∑
i

[Φ(ui)Ψ(vi) + uiΦ́(ui)Ψ(vi) + viΦ(ui)Ψ́(vi) + 3uiviΦ́(ui)Ψ́(vi)]

The MLE of θ, then could be canonically represented as

θ̂ = argmax
θ
ln (θ|u, v) (5)

The Copula can be used to make generalized bivariate distributions when marginal distributions are
F (x) and G(y). Some examples are mentioned in the following sections.
Example 2.1 The bivariate Taylor expansion of exponential part (1) at (u, v) = (1, 1) with the function
Φ(x) = Ψ(x) = 1− x generate parametric families copulas

Cθ(u, v) = uv

{
1 +

∞∑
r=1

[θ(1− u)(1− v)]r

r!

}
, θ ∈ [−1, 1]

This is higher order polynomial section.
Example 2.2 The bivariate Taylor expansion exponential part of (1) with order 3 or 4 at (u, v) = (1, 1)
and Φ(x) = Ψ(x) = 1− x, generate parametric families of FGM copulas.
Example 2.3 Relation (1) with the function Φ(x) = ln(x) and Ψ(x) = − ln(x ) generate parametric
families of Gumbell-Barnnet copulas.
Some properties are mentioned in the following sections.
Theorem2. Suppose CΦ,Ψ

θ (u, v) that defined in (1) under conditions in theorem 1:
I) The conditional distribution function for V given U = u is

CΦ,Ψ
u (v) = P (V ≤ v|V ≤ v) = veθΦ(u)Ψ(v) [1 + uΦ́(u)Ψ(v)] (6)

II) Let (U, V ) be a pair of random variable with copula (1) and uniform marginals. Then,

P (U < V ) =
1

2
(7)

Proof: I) The conditional distribution function P (V ≤ v|V ≤ v) in (6) follows from the derivative of

CΦ,Ψ
θ (u, v) with respect to u , i.e., ∂

∂uC
Φ,Ψ
θ (u, v) .

II) From (3) we have

P (U < V ) =

∫ 1

0

∫ v

0

∂2

∂u∂v
CΦ,Ψ
θ (u, v)dudv

=

∫ 1

0

∫ v

0

eθΦ(u)Ψ(v) {[1 + θuΦ́(u)Ψ(v)][1 + θvΦ(u)Ψ́(v)] + θuvΦ́(u)Ψ́(v)} dudv

=

∫ 1

0

eθΦ(v)Ψ(v)v [1 + θvΦ(v)Ψ́(v)] dv

=

∫ 1

0

veθΦ(v)Ψ(v)dv +

{
v2

2
eθΦ(v)Ψ(v)

∣∣∣∣1
0

−
∫ 1

0

veθΦ(v)Ψ(v)dv

=
1

2

So, P (U < V ) = 1
2 . We know, if X andY be independent and identically distributed continuous random

variables, then P (X < Y ) = 1
2 .
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3 Measures of dependence

In this section we will look at different ways in which copulas can be used in the study of dependence be-
tween random variables. For a historical review of measures of association and concepts of independence,
see [Joe (1997), Caari‘ere (2004), and Nelsen (2006)].
3.1 Spearman’s rho

Let X and Y be continuous random variables whose copula is C. then the population version of
Spearman’s rho for X and Y is given by

ρ = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3 (8)

we now present the results on the properties of a novel family of copula. Note that if θ = 0, then U andV
are independent and ρ = 0.
Since direct computation of the Spearman correlation for new copula is impossible, we compute the
Spearman correlation for special case of functions Φ and Ψ.
Example 3.1 From (8) and (1) with the function Φ(x) = Ψ(x) = 1− x, Spearman’s Rho is

ρ = 12

∫ 1

0

∫ 1

0

uveθ(1−u)(1−v)dudv − 3

= 12

∫ 1

0

veθ(1−v) − 1− θ(1− v)

θ2(1− v)2
dv − 3

= 12
(1− θ) {Ei(1,−θ) + γ + ln(−θ)} − eθ + 2θ + 1

θ2
− 3 .

where γ = −0.5772156649 and Ei(t, z) is the exponential integrals by Ei(t, z) = zt−1Γ(1 − t, z). It may
be noted that ρ ∈ [−0.2916, 0.3806].

On the other hand, by using the example 2.1, we can also compute Spearman correlation function.
The amplitude correlation is

ρ = 12

∫ 1

0

uv

{
1 +

∞∑
r=1

[θ(1− u)(1− v)]r

r!

}
dudv − 3

= 12

{ ∞∑
r=1

θr

(r + 2)!

1

(r + 1)(r + 2)

}

now we approximate the above relation with finite term m, such as

ρ ≈ 12

{ ∞∑
r=1

θr

(r + 2)!

1

(r + 1)(r + 2)

}
the numerical results of this approximation for the lover and upper bound of ρ with θ = 1 and θ = −1
respectively are shown in Table 3.1.

Table 3.1: Approximate of the lover and upper bound of ρ.
m Lover bound of ρ Upper bound of ρ
1 -0.3333333333 0.3333333333
5 -0.2961678005 0.3806122449
10 -0.2961629109 0.3806180585
25 -0.2961629109 0.3806180585
50 -0.2961629109 0.3806180585
100 -0.2961629109 0.3806180585
200 -0.2961629109 0.3806180585
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Note that in Table 3.1 when m = 1, we have ρ = θ
3 ∈ [−0.33, 0.33] which is bound Spearman’s Rho

for FGM copula. Example 3.1 shows that the upper bound Spearman’s Rho in new family has improved
with respect to spearman correlation amplitude in FGM family, because polynomial section has higher
order with respect to FGM copula.
3.2 Tail Dependence

The concept of tail dependence relates to the amount of dependence in the upper-right quadrant tail
or lower-left-quadrant tail of a bivariate distribution (Farlie, 1960). It is a concept that is relevant for the
study of dependence between extreme values. It turns out that tail dependence between two continuous
random variables and is a copula property and hence the amount of tail dependence is invariant under
strictly increasing transformations of X and Y .
Definition 3.2.1 If a bivariate copula C is such that,

LU = lim
u−→1

1− 2u+ C(u, u)

1− u
(9)

exists, then C has upper tail dependence if LU ∈ (0, 1], and upper tail independence if LU = 0. The
measure is extensively used in extreme value theory. It is the probability that one variable is extreme
given that the other is extreme, i.e., LU = P {U > u|V > v}. Thus LU could be viewed as a quantile
dependent measure of dependence (Coles, Currie and Tawn, 1999).
Definition 3.2.2 The concept of lower tail dependence can be defined in a similar way. If the limit,

LL = lim
u−→0

C(u, u)

u
(10)

exists, then C has lower tail dependence if LL ∈ (0, 1], and lower tail independence if LL = 0. Similarly
lower tail dependence is defined as LU = P {U < u|V < v}. For copulas without a simple closed form
an alternative formula for LL is more useful. So, the upper tail dependence of the copula (1) by using
(9) is,

LU = lim
u−→1

1− 2u+ u2eθΦ(u)Ψ(u)

1− u
= 0

since Φ(1) = 0 and Ψ(1) = 0.
The lower tail dependence of the copula (1) by using (10) is,

LL = lim
u−→0

u2eθΦ(u)Ψ(u)

u
= 0

4 Concepts of dependence

In this section, for the sake of simplicity, we assume that X and Y are exchangeable. Several concepts of
positive dependence have been introduced and characterized in terms of copulas. The random variables
X and Y are
a) Positively Quadrant Dependent (PQD) if for all

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y) , (x, y) ∈ R2

or equivalently

C(u, v) ≥ uv , ∀(u, v) ∈ I2

b) Left Tail Decreasing (LTD) if P {Y ≤ y|X ≤ x} is non-increasing in x for all y, or equivalently, see

Theorem 5.2.5 in Nelsen (2006), u −→ C(u,v)
u is non-increasing for all v ∈ I.

c) Right Tail Increasing (RTI) if P {Y > y|X > x} is non-decreasing in x for all y, or equivalently,

u −→ v−C(u,v)
1−u is non-increasing for all v ∈ I.
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d) Left Corner Set Decreasing (LCSD) if P {X ≤ x, Y ≤ y|X ≤ x1, Y ≤ y1}is non increasing in x1 and
y1 for all x and y , or equivalently, see Corollary 5.2.17 in Nelsen (2006), C is a totally positive function
of order 2, i.e. for all (u1, u2, v1, v2) ∈ I4 such that u1 ≤ u2 and v1 ≤ v2 , one has

Λ = C(u1, v1)C(u2, v2)− C(u1, v2)C(u2, v1) ≥ 0

e) Right Corner Set Increasing (RCSI) if P {X > x, Y > y|X > x1, Y > y1}is non-decreasing in x1 and
y1 for all x and y , or equivalently, the survival copula Ĉ associated to C is a totally positive function
of order 2. Negative dependence can be similarly defined.

In the following theorem establishing the concepts of positive dependencies using the above definitions
for the new copula family.
Theorem 3. Let (X,Y ) a random pair with copula CΦ,Ψ

θ (u, v) in (1). X and Y are
(i) PQD if and only if θΦ(u)Ψ(v) ≥ 0.
(ii) LTD if and only if θΦ́(u)Ψ(v) ≤ 0.
(iii) RTI if and only if eθΦ(u)Ψ(v) {1 + θu(1− u)Φ́(u)Ψ(v)}+ 1 ≥ 0.
(iv) LCSD if and only if they are LTD.
(v) RCSI if and only if they are RTI.
(i) By using definition (a) can be rewritten as

eθΦ(v)Ψ(v) ≥ 1, ∀(u, v) ∈ I2

so, θΦ(u)Ψ(v) ≥ 0.

(ii) By using definition (b),
CΦ,Ψ

θ (u,v)

u = veθΦ(u)Ψ(v) is non-increasing with respect to u if and only if,

∂

∂u
veθΦ(u)Ψ(v) = θvΦ́(u)Ψ(v)eθΦ(u)Ψ(v) ≤ 0

Therefore, θΦ́(u)Ψ(v) ≤ 0 .

(iii) by using definition (c),
v−CΦ,Ψ

θ (u,v)

1−u = v(1−ueθΦ(u)Ψ(v))
1−u is non-increasing with respect to u if and only

if,

∂

∂u

{
v(1− ueθΦ(u)Ψ(v))

1− u

}
=
veθΦ(u)Ψ(v)

{
θu2Φ́(u)Ψ(v)− θuΦ́(u)Ψ(v)− 1

}
+ v

(1− u)2
≤ 0

The above condition, reduce to eθΦ(u)Ψ(v)
{
θu2Φ́(u)Ψ(v)− θuΦ́(u)Ψ(v)− 1

}
+1 ≤ 0 or eθΦ(u)Ψ(v) {1 + θu(1− u)Φ́(u)Ψ(v)}+

1 ≥ 0.
(iv) Suppose u1 ≤ u2 and v1 ≤ v2, and by definition (d), we have

Λ = u1v1e
θΦ(u1)Ψ(v1)u2v2e

θΦ(u2)Ψ(v2) − u1v2e
θΦ(u1)Ψ(v2)u2v1e

θΦ(u2)Ψ(v1)

= u1v1u2v2

{
eθΦ(u1)Ψ(v1)eθΦ(u2)Ψ(v2) − eθΦ(u1)Ψ(v2)eθΦ(u2)Ψ(v1)

}
≥ 0

so, eθΦ(u1)Ψ(v1)eθΦ(u2)Ψ(v2) ≥ eθΦ(u1)Ψ(v2)eθΦ(u2)Ψ(v1) and Φ(u1)Ψ(v1) + Φ(u2)Ψ(v2) ≥ Φ(u1)Ψ(v2) +
Φ(u2)Ψ(v1), then

Φ(u1)[Ψ(v1)−Ψ(v2)] ≥ Φ(u2)[Ψ(v1)−Ψ(v2)]

thus, Φ(u1) ≥ Φ(u2). Since u1 ≤ u2 and Φ(u1) ≥ Φ(u2), thus Φ(u) is non-decreasing.
(v) The proof of similar (iv)

The three remaining situations are equivalent to the three previous ones since the considered copulas
are symmetric in the arguments.
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5 Conclusion

Copulas are useful devices to explain the dependence structure among variables by eliminating the in-
fluence of marginal. We propose a new family of copulas to quantify and incorporate it into various
iterated copula families. We investigate properties of the new class of bivariate copula and derive the
measure of association, such as spearman and tail dependence for the new class. The main feature of
this family is to permit the modeling of high positive dependence. The new copula permit to us that
calculate Spearman correlation for high order polynomial section. Necessary and sufficient conditions
are given on the generating functions in order to obtain various dependence properties. Some examples
of parametric subfamilies are provided. We also provide the concept directional dependence in bivariate
regression setting by using copula. In addition, it is possible to build a new class of multivariate copulas.
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1 Introduction

The construction of multivariate distributions with given margins has been a problem of interest to statis-
ticians for many years. The past decade has seen an incredible evolution in copulas (distributions with
uniform univariate margins) and their applications. Sklar’s Theorem (Sklar, 1959) establishes the grounds
for separate investigations of the marginal distribution and the dependence structure that empowers cop-
ula as a more flexible modelling technique than the conventional multivariate approach. Nelsen (2006)
summarizes different methods of constructing copulas. Any joint distribution can be uniquely expressed
as a copula function of individual marginal distributions provided they are continuous. Conversely, copu-
las can be constructed from multivariate distributions without any constraints on marginal distributions.
A natural framework for the construction of multivariate non-normal distributions is the method of cop-
ulas, justified by the Sklar’s theorem. According to Joe [(1997), Section 4.1], a parametric family of
distributions should satisfy four desirable properties:

(a) There should exist an interpretation like a mixture or other stochastic representation.

(b) The margins, at least the univariate and bivariate ones, should belong to the same parametric
family and numerical evaluation should be possible.

(c) The bivariate dependence between the margins should be described by a parameter and cover a
wide range of dependence.

(d) The multivariate distribution and density should preferably have a closed-form representation; at
least numerical evaluation should be possible.

In general, these desirable properties cannot be fulfilled simultaneously. For example, multivariate normal
distributions satisfy properties (a), (b), and (c) but not (d). The method of copulas satisfies property (c)
but implies only partial closedness under the taking of margins, and can lead to computational complexity
as the dimension increases. It is yet an open problem to find parametric families of copulas that satisfy
all of the desirable properties. In this talk we review some recent results on constructing multivariate
copulas.

2 Preliminaries

Let n ≥ 2 be a natural number. An n-copula is the restriction to [0, 1]n of a continuous multivariate
distribution function whose univariate margins are uniform on [0, 1]. More precisely:
Definition 1. An n-copula is a function C : [0, 1]n −→ [0, 1] which satisfies:

(C1) For every u = (u1, u2, . . . , un) in [0, 1]n, C(u) = 0 if at least one coordinate of u is 0, and
C(u) = uk whenever all coordinates of u are 1 except uk;
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(C2) C is n increasing; i.e., for every a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in [0, 1]n such that
ak ≤ bk for all k = 1, 2, . . . , n,

VC([a,b]) =
∑

sgn(c)C(c) ≥ 0

where [a,b] denotes the n-box[a1, b1] × [a2, b2] × · · · × [an, bn], the sum is taken over all the vertices
c = (c1, c2, . . . , cn) of [a,b] such that each ck is equal to either ak or bk, and sgn(c) is 1 if ck = ak for an
even number of k′s, and −1 if ck = ak for an odd number of k′s.

The importance of copulas is described in the following result: Let X = (X1, . . . , Xn) be a random
vector with joint distribution function H and respective margins F1, . . . , Fn. Then there exists an n-
copula C (which is uniquely determined on RangeF1 × · · ·×RangeFn) such that

H(x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)},

for all x = (x1, . . . , xn) in [−∞,∞]n. If F1, . . . , Fn are continuous, then C is unique. In the sequel, we
shall suppose that X is continuous. For a complete review, see Nelsen (2006).

If u = (u1, . . . , un) ∈ [0, 1]n, Πn(u) =
n∏
i=1

ui denotes the n-copula of independent continuous random

variables. For every u in IIn, any n-copula C satisfies that

Wn(u) = max(

n∑
i=1

ui − n+ 1, 0) ≤ C(u) ≤ min(u1, u2, . . . , un) =Mn(u).

For every n ≥ 2, Mn is an n-copula; however Wn is an n-copula if and only if n = 2. Let X > x denote
the component-wise inequality, and let 1 be an n-dimensional vector of 1′s. If U is a vector of uniform
[0, 1] random variables with n-copula C, then Ĉ(u) = P [1−U < u] and C(u) = P [U > u] are the
survival copula and the survival function, respectively, associated to C. Given two n-copulas C1 and C2,
let C1 ≤ C2 denote the inequality C1(u) ≤ C2(u) for all u. C is radially symmetric if C = Ĉ. C(πu)
denotes the n-copula given by any permutation π of u.

The population versions of two non-parametric measures of multivariate association between compo-
nents of a continuous random vector U with associated n-copula C are two multivariate generalizations
of Kendall’s tau and the Spearman’s rho coefficient, which are given by

τn(C) =
1

2n−1 − 1

(
2n
∫
[0,1]n

C(u)dC(u)− 1

)
and

ρn(C) =
n+ 1

2n − (n+ 1)

[
2n−1

(∫
[0,1]n

C(u)dΠn(u) +

∫
[0,1]n

Πn(u)dC(u)

)
− 1

]
,

respectively ; see Nelsen (2002).

3 Multivariate FGM type distributions

The well-known Farle-Gumbel-Morgrnstern (FGM) family of copulas is a copula of the form

C(u, v) = uv[1 + θ(1− u)(1− v)], θ ∈ [−1, 1]

for all u, v ∈ [0, 1]. The natural multivariate generalization of this copula could be

C(u1, ..., un) =

n∏
i=1

ui[1 + θ

n∏
i=1

(1− ui)], θ ∈ [−1, 1].

Rodŕıguez-Lallena and Úbeda-Flores (2004) proposed and studied a family of bivariate copulas of the
form

Cλ(u, v) = uv + λf(u)g(v), 0 ≤ u, v ≤ 1, (1)
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where f and g are two absolutely continuous functions such that f(0) = f(1) = g(0) = g(1) = 0, and

λ ∈ [−1/max(αγ, βδ),−1/min(αδ, βγ)],

where
α = inf{f ′(u) : u ∈ A}, β = sup{f ′(u) : u ∈ A},

γ = inf{g′(v) : v ∈ B}, δ = sup{g′(v) : v ∈ B},
with

A = {u ∈ [0, 1] : f ′(u)exists}, B = {v ∈ [0, 1] : g′(v)exists}.
Some multivariate extensions for this model are introduced by Dolati and Úbeda-Flores (2006).

3.1 First multivariate extension

A natural extension of (1) is a multivariate copula of the form

Cθ(u1, ..., un) =
n∏
i=1

ui + θ
n∏
i=1

fi(ui), (2)

where fi, 1 ≤ i ≤ n, are n non-zero absolutely continuous functions such that fi(0) = fi(1) = 0 and

−1

sup
(u1,...,un)∈D+

(
n∏
i=1

f ′i(ui)

) ≤ θ ≤ −1

inf
(u1,...,un)∈D−

(
n∏
i=1

f ′i(ui)

) ,

D− = {(u1, ..., un) ∈ [0, 1] :
n∏
i=1

f ′i(ui) < 0} and D+ = {(u1, ..., un) ∈ [0, 1]n :
n∏
i=1

f ′i(ui) > 0} .

Different properties of this family are studied in Dolati and Úbeda-Flores (2006). The survival function
and the survival n-copula associated to this family are given by

Cθ(u1, ..., un) = P (U1 > u1, ..., Un > un)

=
n∏
i=1

(1− ui) + (−1)nθ
n∏
i=1

fi(ui)

and

Ĉθ(u1, ..., un) = P (1− U1 ≤ u1, ..., 1− Un ≤ un)

=
n∏
i=1

ui + (−1)nθ
n∏
i=1

fi(1− ui).

Observe that for this class of n-copulas we have the relationship

ρ(Cθ) =
(n+ 1)(2n−1 − 1)τ(Cθ)

2(2n − n− 1)
.

For n = 2, it reduces to ρ(C)
τ(C) =

3
2 .

Example. Let fi(u) = ub(1− u)a, 1 ≤ i ≤ 3, with a, b ≥ 1. Then

Cθ(u1, u2, u3) = u1u2u3 + θub1(1− u1)
aub2(1− u2)

aub3(1− u3)
a,

is a 3-copula if and only if

−min

{
1

(K+
ab)

2K−
ab

,
1

(K−
ab)

3

}
≤ θ ≤ min

{
1

(K−
ab)

2K+
ab

,
1

(K+
ab)

3

}
.
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with K+
ab = (R(a, b))b−1(1−R(a, b))a−1(R(a, b)− b) and K−

ab = (S(a, b))b−1(1− S(a, b))a−1(S(a, b)− b),
where

R(a, b) =
b(a+ b− 1) +

√
ab(a+ b− 1)

(a+ b)(a+ b− 1)
, and

S(a, b) =
b(a+ b− 1)−

√
ab(a+ b− 1)

(a+ b)(a+ b− 1)
.

3.2 Second multivariate extension

Let f and g be non-zero absolutely continuous functions such that f(0) = f(1) = 0 and g(0) = g(1) = 0.
Let α be a real number, and consider the function C∗

α given by

C∗
α(u) =

n∏
i=1

ui + α
∑

1≤i<j≤n

f(ui)g(uj)
n∏
k=1
k ̸=i,j

uk, u ∈ [0, 1]n. (3)

Then each k-margin, 2 ≤ k < n, of C∗
α is again in this parametric family. C∗

α is an absolutely continuous
function with density c∗α(u) = 1 + α

∑
1≤i<j≤n

f ′(ui)g
′(uj). Thus, the above function is an n-copula if and

only if
−1

max{
∑

1≤i<j≤n
f ′(ui)g′(uj)}

≤ α ≤ −1

min{
∑

1≤i<j≤n
f ′(ui)g′(uj)}

.

Different properties of this family are studied in Dolati and Úbeda-Flores (2006). The measures
Kendall’s tau and the Spearman’s rho associated with this family are given by

τ(C∗
α) =

4αn(n− 1)

2n−1 − 1

∫ 1

0

f(u)du

∫ 1

0

g(u)du

and

ρ(C∗
α) =

2αn(n2 − 1)

2n − (n+ 1)

∫ 1

0

f(u)du

∫ 1

0

g(u)du.

Observe that for this class of n-copulas we have, again, the relationship

ρ(C∗
α) =

(n+ 1)(2n−1 − 1)τ(C∗
α)

2(2n − n− 1)
.

3.3 Third multivariate extension

Let Θ = {θi1···ik : 1 ≤ i1 < · · · < ik ≤ n, 2 ≤ k ≤ n} be a set of 2n − n− 1 parameters. A third class of
distributions which generalizes (1) can be the following (2n − n− 1)-parameter family:

C∗∗
Θ (u1, ..., un) =

n∏
i=1

ui +
n∑
k=2

∑
1≤i1<···<ik≤n

θi1···ik

ik∏
j=i1

fj(uj)
n∏
l=1

l ̸=i1,...,ik

ul, (4)

with fi(0) = fi(1) = 0 and

1 +
n∑
k=2

∑
1≤i1<···<ik≤n

θi1···ik

ik∏
j=i1

f ′j(uj) ≥ 0

Each k -margin, 2 ≤ k < n, of a member this family is again an k -copula of the same type.
The survival copula associated to C∗∗

Θ is given by

Ĉ∗∗
Θ (u1, ..., un) =

n∏
i=1

ui +
n∑
k=2

(−1)k
∑

1≤i1<···<ik≤n

θi1···ik

ik∏
j=i1

fj(1− uj)
n∏
l=1

l ̸=i1,...,ik

ul.
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The Kendall’s tau and Spearman’d rho for this family are given by

τ(C∗∗
Θ ) =

2

2n−1 − 1

n∑
k=2

2k−1(1 + (−1)k)
∑

1≤i1<···<ik≤n

θi1···ik

ik∏
j=i1

∫ 1

0

fj(uj) duj ,

ρ(C∗∗
Θ ) =

n+ 1

2n − n− 1

n∑
k=2

2k−1(1 + (−1)k)
∑

1≤i1<···<ik≤n

θi1···ik

ik∏
j=i1

∫ 1

0

fj(uj) duj .

Again, we have the relationship

ρn(C
∗∗
Θ ) =

(n+ 1)(2n−1 − 1)τn(C
∗∗
Θ )

2(2n − n− 1)
.

3.4 Forth multivariate extension

For a given bivariate copula C∗, Kim and Sugur (2004), considered a copula of the form

C(u, v) = C∗(u, v) + θf(u)g(v), (5)

where f and g are absolutely continuous functions with f(1) = g(1) = f0) = g(0) = 0 and

θ ∈ [−1/max(αγ, βδ),−1/min(αδ, βγ)], min(αδ, βγ) ≥ −1,

α = inf{f ′(u) : u ∈ A}, β = sup{f ′(u) : u ∈ A},

γ = inf{g′(v) : v ∈ B}, δ = sup{g′(v) : v ∈ B},

with

A = {u ∈ [0, 1] : f ′(u)exists}, B = {v ∈ [0, 1] : g′(v)exists}.

A simple subclass of this model is

C(u, v) = C∗(u, v) + θ[ψ1(u)− ψ2(u)][ψ1(v)− ψ2(v)],

where ψ1 and ψ2 are two absolutely continuous functions such that ψ1(0) = ψ1(1) = ψ2(0) = ψ2(1) = 0.
This function is also a copula under the condition

[ψ′
1(u)− ψ′

2(u)][ψ
′
1(v)− ψ′

2(v)] ≥ 0,

−∂C∗(u,v)
∂u∂v

[ψ′
1(u)− ψ′

2(u)][ψ
′
1(v)− ψ′

2(v)]
≤ θ,

for all u, v ∈ [0, 1], see Kim and Sugur (2004).

A multivariate extension of this family could be constructed as follows. Given a n-copula C∗, consider
the function

C(u1, ..., un) = C∗(u1, ..., un) + θ
n∏
i=1

[ψ1(ui)− ψ2(ui)].

It is of interest to find conditions for which this function a n-copula.
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3.5 Fifth multivariate extension

Let D be a (n − 1)-copula and A : [0, 1]n−1 → [0, 1] and f : [0, 1] → [0, 1] be two functions with
f(0) = f(1) = 0, A(1, ..., 1) = 0 and A(u1, ..., un−1) = 0, if at least one component is zero. A new
extension for FGM type copulas proposed in Durante et al. (2010) by

C(u1, ..., un) = D(u1, ..., un−1)un +A(u1, ..., un−1)f(un).

They provided conditions for which C is a copula.
Example. With D(u1, ..., un−1) =

∏n−1
i=1 ui and A =

∏n−1
i=1 ui(1− ui), they showed that

C(u1, ..., un) =
n∏
i=1

ui +
n−1∏
i=1

ui(1− ui)f(un),

is an n-copula if and only if f is 1-Lipschitz function. For instance with f(t) = λt, λ ∈ [−1, 1], one get
an n- copula of the form

C(u1, ..., un) =
n∏
i=1

ui[1 + λ
n−1∏
i=1

(1− ui)].

With f(t) = t(1+ t), D(u1, ..., un−1) = u1u2H(u3, ..., un−1), and A(u1, ..., un−1) = λu1(1− u1)u2(1−
u2)H(u3, ..., un−1), where H is a (n− 3)-copula and λ ∈ [−1/3, 1/3], we have

C(u1, ..., un) = u1u2unH(u3, ..., un−1)[1 + λ(1− u1)(1− u2)(1 + un)].

4 Compatibility Problem

A difficult problem related to the theory of multivariate distributions is to construct a multivariate
distribution with prescribed multivariate margins. Some aspects of this problem including existence of
such distributions, compatibility and methods of constructing are discussed, for instance, by Dall’Aglio
(1972), Cohen (1984), Rüschendorf (1985), Cuadras (1992), Marco and Ruiz-Rivas (1992), Li et al. (1996,
1999) and Joe (1997). The problem can be formulated as follows: For 1 < m ≤ n, n-copula C has

(
n
m

)
m-marginals. If an n-copula exists for which the given copulas are the m-marginals, then these are said
to be compatible.
Example. Let X,Y and Z be three random variables with

CX,Y =W,CX,Z =W,CY,Z =W.

Is there a 3-copula C such that

C(x, y, 1) =W (x, y), C(x, 1, z) =W (x, z), C(1, y, z) =W (y, z)?

The answer is negative. Since we must have X = g(Y ), X = h(Z) and Y = h(Z), with f, g, h decreasing,
which is impossible.

4.1 Some partial answers

Let A,B be two 2-copulas. The ∗-product operation is defined in Darsow et al. (1992) by

A ∗B(x, y) =

∫ 1

0

D2A(x, t)D1B(t, y)dt

where

D1C(x, y) =
∂

∂x
C(x, y), D2C(x, y) =

∂

∂y
C(x, y).

They showed that A ∗B is also a copula. Kolesárová et al. (2006) defined a function C by

C(x, y, z) =

∫ y

0

D2A(x, t)D1B(t, z)dt.
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They showed that it is a 3-copula and

C(x, y, 1) = A(x, y), C(1, y, z) = B(y, z), C(x, 1, z) = A ∗B(x, z),

i.e., the copulas A, B and A ∗B are always compatible.
Note that

A ∗B(x, y) =

∫ 1

0

Π{D2A(x, t), D1B(t, y)}dt,

where Π(x, y) = xy. For given 2-copula A,B and C, Durante et al. (2008) introduced the generalized
∗-product operation by

A ∗C B(x, y) =

∫ 1

0

C{D2A(x, t), D1B(t, y)}dt.

They showed that it is also a copula. They showed that the function

E(x, y, z) =

∫ y

0

C{D2A(x, t), D1B(t, z)}dt.

is also a 3-copula and

E(x, y, 1) = A(x, y), E(1, y, z) = B(y, z), E(x, 1, z) = A ∗C B(x, z),

i.e., the copulas A, B and A ∗C B are always compatible.

4.2 A multivariate generalization

Let A1, ..., An be a 2-copula. Consider the function C : [0, 1]n → [0, 1] by

C(u1, ..., un) =

∫ 1

0

∂A1(u1, t)

∂t

∂A2(u2, t)

∂t
....
∂An(un, t)

∂t
dt.

Then C is an n-copula. Note that

C12(u1, u2) = C(u1, u2, 1, ..., 1) =

∫ 1

0

∂A1(u1, t)

∂t

∂A2(u2, t)

∂t
dt

=

∫ 1

0

∂A1(u1, t)

∂t

∂AT2 (t, u2)

∂t
dt

= A1 ∗AT2 (u1, u2),

where AT (u, v) = A(v, u).
Let U1, ..., Un and Z be uniform [0, 1] random variables such that (U1, Z), ..., (Un, Z) are independent

random vectors with the 2-copulas A1, ..., An. Then

P (U1 ≤ u1, ..., Un ≤ un|Z = t) =

n∏
j=1

P (Uj ≤ uj |Z = t)

=
n∏
j=1

∂Aj(uj , t)

∂t
,

and thus

C(u1, ..., un) = P (U1 ≤ u1, ..., Un ≤ un)

=

∫ 1

0

P (U1 ≤ u1, ..., Un ≤ un|Z = t)dt

=

∫ 1

0

n∏
j=1

∂Aj(uj , t)

∂t
dt.
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Example. For j = 1, ..., n, let Aj(u, t) = min{utα, uαt}, with α ∈ [0, 1], be members of the Cuadras-Auge
(1981) family of copulas. Direct calculations shows that∫ 1

0

n∏
j=1

∂Aj(uj , t)

∂t
dt = u(1)

n∏
j=2

u1−α(j) , (6)

where u(1) ≤ u(2) ≤ ... ≤ u(n) denote the components of (u1, ..., un) ∈ In rearranged in increasing order.

5 Multivariate copulas with given bivariate marginals

Dolati and Ubeda-Flores (2005) proposed a method for construction multivariate copulas with given
bivariate margins.

Let {Cij : 1 ≤ i < j ≤ n} be a set of
(
n
2

)
2-copulas, and let

C(u1, ..., un) =
∑

1≤i<j≤n

Cij(ui, uj)

n∏
k=1
k ̸=i,j

uk −
(n− 2)(n+ 1)

2

n∏
i=1

ui.

Then C is an n-copula whose bivariate margins are Cij if and only if

∑
1≤i<j≤n

Cij(vi, vj)− Cij(vi, uj)− Cij(ui, vj) + Cij(ui.uj)

(vi − ui)(vj − uj)
≥ (n− 2)(n+ 1)

2
,

for every uk, vk in [0, 1], k = 1, 2, . . . , n, such that uk < vk.
The expression for the Spearman’s rho for this family is

ρ(C) =
n+ 1

3[2n − (n+ 1)]
·
∑

1≤i<j≤n

ρ(Cij),

where ρ(Cij) denotes the Spearman’s rho coefficient associated to Cij . For n = 3, we have

ρ(C) =
ρ(C12) + ρ(C13) + ρ(C23)

3
.

Example. Let

C12(u1, u2) = u1u2,

C13(u1, u3) = αu1u3 + (1− α)M(u1, u3),

C23(u2, u3) = βu2u3 + (1− β)W (u2, u3)

where α, β ∈ [0, 1], and

M(u1, u3) = min(u1, u3), W (u2, u3) = max(u2 + u3 − 1, 0).

Then, it could be proved that the function

C(u1, u2, u3) = (α+ β − 1)u1u2u3 + (1− α)u2M(u1, u3) + (1− β)u1W (u2, u3)

is a 3-copula if and only if
α+ β ≥ 1.

Example. Let {Cλij : 1 ≤ i < j ≤ n} be a set of
(
n
2

)
FGM 2-copulas

Cij(u, v) = uv[1 + λijuv(1− u)(1− v)], λij ∈ [−1, 1].
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Then the function C defined by

C(u1, ..., un) =
∑

1≤i<j≤n

Cij(ui, uj)
n∏
k=1
k ̸=i,j

uk −
(n− 2)(n+ 1)

2

n∏
i=1

ui,

is an n-copula if and only if ∑
1≤i<j≤n

λij(1− 2ui)(1− 2uj) ≥ −1.

Thus, a sufficient condition is that |
∑

1≤i<j≤n
λij | ≤ 1.

As a particular case, if all the bivariate margins are

Cij(u, v) = uv[1 + λ(1− u)(1− v)],

for all (i, j), then the function C is an copula if and only if

− 2

n(n− 1)
≤ λ ≤ 1

⌊n2 ⌋
.

where ⌊x⌋ denotes the integer part of the real number x.In such a case,

ρ(C) =
n(n− 1)(n+ 1)λ

18[2n − (n+ 1)]
.

5.1 An application

Let {Xn}n∈N be a sequence of random variables such that Xn has the type I Extreme Value distribution

Fn(x) = e−e
−(x−an)

b , x ∈ R,

where {an}n∈N is a sequence of real numbers and b > 0. For any n > 2, let Cn consider the copula

Cn(u1, ..., un) =
∑

1≤i<j≤n

Cij(ui, uj)
n∏
k=1
k ̸=i,j

uk −
(n− 2)(n+ 1)

2

n∏
i=1

ui.

with

Cij(u, v) = uv[1 + θ|i−j|(1− u)(1− v)],

with the parameterization θ|i−j| =
1

κ0|i−j|α , for α > 1, where κ0 > ζ(α), and ζ(α) =
∑∞
j=1

1
jα is the

so-called Riemman zeta function.

Let Cn, be the copula associated to the vector (X0, ..., Xn−1), which implies that the copula related
to (Xr, Xs) is Crs, r, s ∈ {0, 1, ..., n− 1} and r ̸= s. Then

Cov(Xt, Xt+h) =
ln(2)2

b2κ0
h−α.

Since the above construction is an n-copula for any n > 2, Sklar’s theorem guarantees the existence
of all finite dimensional distribution functions with the marginals, bivariate copulas and n-dimensional
copulas as specified in the construction above. Therefore, by the Kolmogorov’s existence theorem, we have
just constructed a weakly stationary process {Xn} by reparameterizing a certain family of parametric
copulas and its marginals.
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6 Multivariate extensions of Cuadras-Augé family of copulas

For α ∈ [0, 1], Cuadras and Augé (1981) proposed a family of copulas of the form

Cα(u, v) = min{uvα, uαv}
= min(u, v) (max(u, v))

α
, u, v ∈ [0, 1].

For f : [0, 1] → [0, 1], Durante (2007) considered a function

C(u, v) = min(u, v)f (max(u, v)) .

The function C is a copula if and only if f(1) = 1 and f is increasing, and f(t)
t is decreasing on (0,1].

When f(t) = tα, it reduces to Cuadras-Aug’e family of copulas.
Durante, Quesada-Molina and Úbeda-Flores (2007) considered a multivariate extension of the above

model of the form

C(u1, ..., un) = u[1]

n∏
i=2

f(u[i]),

where u[1], ..., u[n] denote the components of (u1, ..., un) arranged in increasing order; i.e., u[1] = min(u1, ..., un)
and u[n] = max(u1, ..., un). They proved that for every n ≥ 2, the function C is a n-copula if and only if

f(1) = 1 and f is increasing, and f(t)
t is decreasing on (0,1].

6.1 A probabilistic interpretation

Let W1, ...,Wn and Z be n+ 1 independent random variables. Let Wi ∼ f(t) and Z ∼ g(t) = t
f(t) .

Consider Ui = max(Wi, Z), for i = 1, ..., n. Then

P (U1 ≤ u1, ..., Un ≤ un) = P (W1 ≤ u1, ...,Wn ≤ un, Z ≤ u[1])

= u[1]

n∏
i=2

f(u[i])

= C(u1, ..., un).

6.2 Another possible generalization

Consider a continuous and increasing function ϕ : [0, 1] → [0, 1] and suppose that ϕ−1 is absolutely
monotonic of order n; i.e.,

di(ϕ−1(t))

dti
≥ 0, for i = 1, 2, ..., n.

From Morillas (2005), Theorem 4.7, for every n- copula C we have that

Cϕ(u1, ..., un) = ϕ−1{C(ϕ(u1), ..., ϕ(un))}

is also a copula.
In particular, if

C(u1, ..., un) = u[1]

n∏
i=2

f(u[i]),

then the function

Cϕ,f (u1, ..., un) = ϕ−1

[
ϕ(u[1])

n∏
i=2

f(ϕ(u[i]))

]
is also a copula.

For g1(t) = −lnϕ(t) and g2(t) = −ln(f(ϕ(t)), the above family can be written as

Cg1,g2(u1, ..., un) = g−1
1

[
g1(u[1]) +

n∑
i=2

g2(u[i])

]
.
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For the case g1 = g2, we get a direct generalization of the Archimedean family with the generator g

Cg(u1, ..., un) = g−1 [g(u1) + ....+ g(un)] .
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Lallena, J.A. (Eds.) Distributions with Given Marginals and Statistical Modelling, Kluwer Academic
Publishers, Dordrecht, pp. 169–178.

[22] Nelsen, R.B. (2006). An Introduction to Copulas. Second Edition. Springer, New York.
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Abstract

This study introduces a new approach to problem of estimating parameter(s) of a given copula.
More precisely, using the concept of the generalized linear models (GLM) accompanied with least
square method, we introduce an estimation method, say GLM-method. A simulation study has been
conducted to provide a comparison among the inversion of Kendal’s tau, the inversion of Spear-
man’s rho, the pml, the Copula-quantile regression with (q = 0.25, 0.50, 0.75), and the GLM-method.
Such simulation study shows that the GLM-method is an appropriate method whenever the data
distributed according to an elliptical distribution.
Keywords: Parameter estimation; Copula; GLM; Copula-quantile regression

1 Introduction

Copula is used to model the relationship between random variables. It can capture the interdependency
that cannot be exhibited by other association measures such as the well-known correlation coefficient.
One step in copula modeling is the estimation of parameters. The most efficient method is the maximum
likelihood estimator (mle), which is used to evaluate the parameter of any kind of models. It can also
be applied to copula, but the problem becomes complicated as the number of parameters and dimension
of copula increases, because the parameters of the margins and copula are estimated simultaneously.
Therefore, MLE is highly affected by misspecification of marginal distributions. A rather straightforward
way at the cost of lack of efficiency is IFM, which is put forward by Joe (2005). The idea of this method
came from psychometrics literature for latent models based on the multivariate normal distributions.
Similar to MLE in this method the margins of the copula are important, because the parameter estimation
is dependent on the choice of the marginal distributions. First the margins’ parameters are estimated
and then the parameters of copula will be evaluated given the values from the first step.The efficiency of
this method is 1 for product copula under some conditions. Efficiency decreases with strong dependence.
IFM is not a good estimation technique due to its efficiency for extreme dependence near Fréchet bounds.
Both MLE and IFM are placed in the category of parametric methods. Genest et. al. (1995) introduce
a semiparametric method, known as maximum pseudolikelihood estimation (mpl), similar to MLE. The
only difference between this method and MLE is that the data must be converted to pseudo observations.
The consistency, asymptotic normality of this method is established in their paper. They established
that this method is efficient for independent copula. Two nonparametric methods based on the rank of
observations are inversion of Kendall’s tau (itau) and Spearman’s rho (irho). These moment estimations
are applied to one parameter copula when it is exchangeable (Kojadinovic & Yan, 2010). Kojadinovic &
Yan (2010) found that when τ ≤ 0.4, the inversion of Spearman’s rho is a good approach for estimating
the parameter of Gumbel-Hougaard copula. They compared mpl, irho and itau by looking at their
mean square error, for different sample sizes and dependency level. It turns out that for n = 50 and
τ ≤ 0.2 i.e. weak dependency, two methods of moment estimation seem to be better than the estimation
based on pseudo likelihood. However, as dependency increases and sample size gets larger, mean square
error for mpl will reduce. The estimation based on mpl is more biased than the methods of moment
estimators, but the biasedness will decrease as n gets larger. The estimation based on the inversion
of Spearman’s rho performs well for the Gumbel-Hougaard copula. In general, the estimation based
on Kendall’s tau is better than the Spearman’s rho. Tsukahara (2005) introduced a semiparametric
estimator, known as “rank approximate Z-estimator”. He also proved the asymptotic normality of this
estimator. Through a Monte Carlo simulation, he compared τ -inversion, ρ-inversion, pml, minimum
Cramér-von Mises distance, minimum Kolmogorov-Smirnov distance and rank approximate Z-estimators.
He concluded that pml has the lowest MSE and Z-estimator has the lowest bias. Vandenhende & Lambert
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(2005), showed that it was possible to form a univariate distribution from any Archimedean copula (see
Theorem 1) by writing the generating function in linear form. They used least square estimation to
evaluate the copula parameters. Brahimi & Necir (2012), evaluated the parameters of copula using
method of moments. They particularly focused on Archimedean copulas. Consistency and asymptotic
normality of their procedures have been verified. They concluded that their method is practically faster
and easier. Qu et al. (2009) used the fact that a multivariate Archimedean copula is the same as
survival copula of multivariate L1-norm symmetric distributions and proposed a method for parameter
estimation and model selection concentrating on Archimedean families. They established the consistency
of the estimator and applied Radia Information Criteria (RIC) for selecting the well-fitted Archimedean
copula. Kim et al. (2007) compared two parametric estimation methods i.e. MLE and IFM with pml.
They showed that misspecification of margins had significant impact on parameter estimation when the
methods used were IFM and MLE. But pml is robust against margins misspecification, therefore it is
preferred to other two methods. However, MLE is the most efficient method and at the same time the
most efficient one when dealing with multivariate multi parameter copulas. They advised on using pml
method. Haan et al. (2008) calculated the parameter of extreme value copula for censored data using
pseudo-sample based on MLE. The asymptotic distribution of this method was established in their paper.
They also proposed a test statistic for selection of the appropriate copula and found its critical values
using bootstrap methods.

This study uses the concept of the generalized linear model (GLM) along with the least square method
and introduces a new estimation method, namely GLM-method, for estimating parameter(s) of a given
copula. Performance of such GLM-method is compared with performance of other estimation methods
through a simulation study. Cramér-von Mises distance is employed as a criteria for such comparison.
This article is organized as follows: Section 2 provides a brief review on parameter estimation methods and
considers copula quantile regression. GLM-method introduces in Section 3. Section 4 compares different
methods of calculating copulas’ parameters through a simulation study, and Section 5 concludes.

Methods of parameter estimation

This section reviews some most applicable methods used for parameter estimation of a given copula. As
explained above although MLE is misspecified by the margins, it is the most efficient method, which can
be implemented by

L(Θ) =

T∑
t=1

ln c(F1(x1t), F2(x2t), . . . , Fd(xdt)) +

T∑
t=1

d∑
j=1

ln fj(xjt),

where Θ is the vector of all parameters of both the marginals and the copula, and c is ∂Cθ(F1(t1),...,Fd(td))
∂F1(t1)...∂Fd(td)

.

Another parametric method is IFM, where first the parameter of the margins are estimated and then the
parameters of the copula, namely

L(α, θ1, . . . , θn) =

m∑
i=1

log f(xi; θ1, . . . , θn, α).

The point estimation methods i.e. itau and irho are two nonparametric methods, which are applied
given the relationship between the parameter of the copula and the Kendall’s tau and Spearman’s rho
association measures viz. θ = g−1(τ). Such relationship is presented in Table 1 .

Table 1: Two dimensional Copulas, the relations between parameters and Kendall’s tau, τ.

Copula Functional form Parameter

Gaussian CGaR (u1, u2) = Φ(Φ−1(u1),Φ
−1(u2)) R = sin(π(τ)2 )

t (df= ν) CtR(u1, u2) = tv,R(t
−1
ν (u1), t

−1
ν (u2)) R = sin(π(τ)2 )

Gumbel CGumbelθ (u1, u2) = exp(−[(− lnu1)
θ + (− lnu2)

θ]
1
θ ) θ = 1

1−τ
Clayton CClaytonθ (u1, u2) = (u−θ1 + u−θ2 − 1)

−1
θ θ = 2τ

1−τ
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The nonparametric version of MLE, which seems to perform better than other methods when the sample
size and level of dependence increases is pml, in which the data must be converted to pseudo observations.
Suppose Xi = (Xi,1, . . . , Xi,p) are random vectors and Rij the rank of Xij . Then by applying Ûij =

Rij

n+1
the pseudo observations can be calculated. Therefore, the pseudo log-likelihood is given by

logL(θ) =
n∑
i=1

log cθ(ûi),

where ûi = (Ûi,1, . . . , ˆUi,p). For a bivariate copula this simplifies to

L(θ) =
n∑
i=1

log{cθ(
Ri
n+ 1

,
Si

n+ 1
)}.

Copula-quantile regression

When the distribution function of the variables is not normal, the conditional expectation E(Y |X) and
conditional variation V ar(Y |X) does not suffice to give full information on the conditional distribution
function. In such cases, the quantile regression is used. To estimate the parameters of the quantile
regression LSE can be applied, however as opposed to standard mean regression, the loss function is not
square error, instead it is the absolute error loss function, hence the sign of the error terms is important
(Alexander, § 7, 2008). Copula-quantile regression, which is introduced by Bouyé & Salmon (2009) is a
nonlinear form of quantile regression. To apply quantile regression, one needs to know the conditional
copula distribution which is given by CU |V (u|v) = ∂

∂vC(u, v), CV |U (v|u) = ∂
∂uC(u, v). The copula-

quantile regression is defined as the following.

Definition 1. If C(., ., θ) is a parametric copula with parameter θ, the pth quantile curve of v conditional
on u is defined by

p =
∂C(u, v; θ)

∂u
,

and rearranging with respect to v the copula-quantile regression is given by

v = r(u, p; θ).

They studied properties of copula-quantile regression and showed its application on the interdepen-
dency between foreign exchange markets, which are skewed. They also compared their findings with tail
dependency measure at different α. They noted that tail dependency at different α is not corresponding
to copula regression at different quantiles and the results are different. They expressed that their results
were more reliable. The following lemma utilized from Bouyé & Salmon (2009)’s finding and established
the expression of quantile regression for 5 most applicable copulas, i.e., Clayton, Frank, Gumbel, Normal,
and t copulas. (Bouyé & Salmon, 2009) The copula-quantile regression for different class of copulas is
given by

(i) Clayton copula v = ((p−θ/(1+θ) − 1)u−θ + 1)−1/θ;

(ii) Frank copula v = −1
θ ln(1− (1− e−θ)(1 + e−θu(p−1 − 1))−1);

(iii) Normal copula v = Φ(ρΦ−1(u) +
√
1− ρ2Φ−1(p));

(iv) t-copula v = tν(ρt
−1
ν (u) +

√
(1− ρ2)(ν + 1)−1(ν + t−1

ν (u)2)t−1
ν+1(p)).

To employ the above lemma, one has to set u := FX(x) and v := FY (y). It should be worthwhile to
mention that the Gumbel copula does not have a closed form for the copula-quantile regression method.
Therefore, its copula-quantile regression has to be found numerically.
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GLM approach to parameter estimation

The idea of using the GLM method for estimating parameter(s) of a given copula has been suggested
roughly by several authors, see Genest (1987) and Frees & Valdez (1998) for Frank copula; Parsa &
Klugman (2011) for Gaussian copula.

The following theorem uses the GLM method along with the least square method and provides a
particle algorithm to estimate copula’s parameter(s). Suppose C(., ., θ) is a bivariate copula function
with parameter θ. Then, based upon continuous random sample (X1, Y1), (X2, Y2), · · · , (Xn, Yn), copula
parameter θ can be estimated by minimizing the following least square function in θ.

Q(θ) =

n∑
i=1

(
Vi − 1 +

∫ 1

0

∫ k

0

cθ(Ui, t)dtdk

)2

, (1)

where Vi := FY (Yi) and Ui := FX(Xi). Proof. The GLM expression on two uniform random variables
V and U can be stated as

E(V |U = u) =

∫ ∞

0

(1− FV |U (v|u))dv +
∫ 0

−∞
FV |U (k|u)dk

= 1−
∫ 1

0

FV |U (k|u)dk

= 1−
∫ 1

0

∫ k

0

fU,V (u, t)

fU (u)
dtdk

= 1− 1

cθ0(u)

∫ 1

0

∫ k

0

cθ(u, t)fV (t)dtdk

= 1−
∫ 1

0

∫ k

0

cθ(u, t)dtdk.

The second and last equations arrived from the fact that V and U are two uniform random variables and
the forth equation arrives from identity f(t1, . . . , td) = cθ(F1(t1), . . . , Fd(td))

∏d
i=1 fi(ti).

Now the least square expression can be written as Eqution 1. □
In most cases the above theorem has to be employed numerically. The following corollary explores a

situation that the GLM-method has explicit solution. Suppose cθ(·, ·) is a Farlie-Gumbel-Morgenstern
copula function. Then, using random sample (X1, Y1), (X2, Y2), · · · , (Xn, Yn), copula parameter θ is

θ =
3
∑n
i=1(yi −

1
2 )(xi −

1
2 )∑n

i=1(xi −
1
2 )

2
.

Proof. The PDF of Farlie-Gumbel-Morgenstern copula is

cθ(u, v) = 1 + θ(1− 2u)(1− 2v).

Substituting cθ(u, v) is least square function given by Theorem 1 leads to

Q(θ) =
n∑
i=1

(yi − 1 +
1

2
+

1

6
θ(1− 2xi))

2.

The desire proof arrives after solving ∂
∂θQ(θ) = 0 in θ. □

The copula’s PDF, cθ(·, ·), plays a crucial role in calculation of

E(V |U = u) = 1−
∫ 1

0

∫ k

0

cθ(u, t)dtdk,

in Theorem 1. Table 2 provides the copula’s PDF, cθ(·, ·) for some well known class of copulas.
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Table 2: CDF and PDF of two dimensional Copulas.

Copula CDF PDF

Gaussian Φ(Φ−1(u1),Φ
−1(u2))

1√
1−θ2 exp

{
− θ2ξ21−2θξ1ξ2+θ

2ξ22
2(1−θ2)

}
t (df= ν) tv,R(t

−1
ν (u1), t

−1
ν (u2))

1√
θ

Γ(ν/2+1)Γ(ν/2)
Γ(ν/2+1/2)2

[
ν(1−θ2)(1+ς21/ν)(1+ς

2
2/ν)

ν(1−θ2)+ς21+ς22−2θς1ς2

](ν/2+1)

Gumbel exp
{
−[(− lnu1)

θ + (− lnu2)
θ]

1
θ

}
(A+ θ − 1)A1−2θ exp(−A)(xt)−1

Clayton (u−θ1 + u−θ2 − 1)
−1
θ

1+θ
(xt)θ+1 (x

−θ + t−θ − 1)−2−1/θ

Frank −1
θ ln(1 + (exp(−θu1)−1)(exp(−θu2)−1

exp(−θ)−1 ) exp{−θ(x+t)}(1−exp{−θ})
(exp{θ(x+t)}−exp{−θx}−exp{−θt}+exp{−θ})2

where A = ((− lnx)θ + (− ln t)θ)1/θ, ξ1 = Φ−1(x) and ξ2 = Φ−1(t) are the quantiles of standard normal
distribution, and ς1 = t−1

ν (x) and ς2 = t−1
ν (t) are the quantiles of student distribution with ν degree of

freedom.

2 Simulation study

Now a simulation study compares these five estimation methods numerically. For this propose five
different distributions normal, t, Cauchy, and two extreme value distributions, logistic and Hüsler-Reiss
distributions are selected. The first three distributions are symmetric and appropriate for financial data
and the last two are appropriate distributions for insurance and reinsurance portfolios, which involve losses
with high severity and low frequency. The distribution of insurance claims data are normally skewed and
heavy-tailed (Embrechts et. el., 2002, and Kotz & Nadarajah, 2000). The data are simulated from these
distributions with high dependence level at 0.9. All data are transformed into pseudo-observations. First,
they are ranked and then multiplied by 1

n+1 to avoid problem that may arise at boundary [0, 1]d. Five
copulas, which are mostly used, viz, Gumbel, Frank, Clayton, normal and t copulas are selected. The
parameters are estimated with 5 approaches: (i) Inversion of Kendal’s tau; (ii) Inversion of Spearman’s
rho; (iii) pml; (iv) Copula-quantile regression with (q = 0.25, 0.50, 0.75), and (v) GLM-method. It is
expected that each method is suitable for a particular distribution. To compare the results, the cramér-
von Mises distance is used. It is defined by∫ ∞

−∞

∫ ∞

−∞
(FXY (x, y)− Cθ(FX(x), FY (y)))

2fXY (x, y)dxdy.

This criteria measures how far is the distance of the real data from the data generated by copula; in other
words, this is the weighted average of the errors. Normally the lower this distance, the better would be
the results. The simulation is carried out on sample size 1000 with 100 iterations using the packages
copula, fCopulae, quantreg, and evd in R. The calculation for elliptical copulas and distributions take
longer than others. The results are presented in the tables below.

Table 2: The mean and (sd) for parameter (1st row) and Cramér distance (2nd row) based on different methods and different copulas

Logistic Clayton Frank Gumbel Normal t (df=4)
itau 0.2357896 (0.04758373) 0.9549693 (0.1757497) 1.107067 (0.0292168) 0.1642097 (0.02938949) 0.1642097 (0.02938949)

0.0003710279 (0.0003495556) 0.0002174217 (0.0002381969) 76638e-05 (0.0001018399) 0.579039 (0.02567358) 0.6560563 (0.02580707)
irho 0.2338561 (0.04714266) 0.9471112 (0.1742059) 1.107806 (0.02868843) 0.1629714 (0.02918711) 0.1629714 (0.02918711)

0.0003569152 (0.0003406244) 0.0002070756 (0.0002300933) 7.428632e-05 (0.0001018399) 0.5783464 (0.02557629) 0.6553711 (0.02571474)
mpl 0.1379168 (0.03819629) 0.96518 (0.1761349) 1.111834 (0.02539398) 0.170902 (0.02850896) 0.1510195 (0.02719727)

8.43965e-05 (0.0001237738) 0.0002299379 (0.0002474306) 5.685229e-05 (8.676336e-05) 0.5827182 (0.02535498) 0.64889 (0.02446221)
q(0.25) 3.26151 (0.1628287) 0.9533234 (0.2298271) 1.048115 (0.01800756) 0.152806 (0.04361077) 0.1826987 (0.05319693)

0.07143315 (0.002748488) 0.0002694946 (0.0002294357) 0.0004259352 (0.0002452429) 0.5737317 (0.02902004) 0.6684247 (0.03596833)
q(0.50) 5.496151 (0.4657097) 0.8908815 (0.1989322) 1.050184 (0.01465274) 0.1688641 (0.03974894) 0.1366404 (0.0341501)

0.09836826 (0.003908395) 0.0001733166 (0.0002426908) 7.76638e-05 (0.0001830703) 0.5822645 (0.02910009) 0.6419208 (0.02552031)
q(0.75) 3.848151 (0.2425259) 1.053014 (0.1889862) 1.052381 (0.01401862) 0.1777977 (0.03607364) 0.1978619 (0.03694576)

0.08043742 (0.003343596) 0.0003670748 (0.0003141369) 0.000358005 (0.0001654764) 0.5872107 (0.02965161) 0.6761877 (0.03174102)
GLM 0.3045018 (0.06306191) 1.072397 (0.1985979) 0.3806179 (0.3222072) 0.2045057 (0.03607838) 0.2167632 (0.004406308)

0.001039189 (0.0007416712) 0.0004081506 (0.0003793207) 0.08743481 (0.05128618) 0.603464 (0.03105044) 0.6866389 (0.02079485)

Table 3: The mean and (sd) for parameter(1st row) and Cramér distance (2nd row) based on different methods and different copulas



38 2nd Workshop on Copula and its Applications

Hüsler-Reiss Clayton Frank Gumbel Normal t (df=4)
itau 0.5361688 (0.06593831) 1.971938 (0.2056333) 1.261172 (0.03080665) 0.3250657 (0.03023427) 0.3250657 (0.03023427)

0.001006468 (0.0006577236) 0.0005220021 (0.0004315309) 6.052187e-05 (7.3808e-05) 0.6646245 (0.03571358) 0.7410599 (0.03551979)
irho 0.5341152 (0.0658127) 1.955466 (0.2013865) 1.260534 (0.0310642) 0.3231768 (0.02983328) 0.3231768 (0.02983328)

0.0009869564 (0.0006519294) 0.0004873584 (0.0004087076) 6.145837e-05 (7.342551e-05) 0.6627463 (0.03520841) 0.7392119 (0.03502771)
mpl 0.3179717 (0.04836689) 1.988077 (0.2064492) 1.263038 (0.02907468) 0.3409704 (0.02758792) 0.3005748 (0.02937067)

0.0001601931 (0.000182298) 0.0005542253 (0.000445662) 5.429113e-05 (7.029836e-05) 0.6803328 (0.03574465) 0.7184925 (0.03246757)
q(0.25) 3.915307 (0.2113648) 1.853813 (0.2246314) 1.111556 (0.01409183) 0.34047 (0.0410683) 0.3738092 (0.03420403)

0.06286956 (0.002568584) 0.0003443664 (0.0003186477) 0.001743771 (0.000365299) 0.681521 (0.045995) 0.7928539 (0.04403958)
q(0.50) 7.882373 (1.071549) 1.876001 (0.2573724) 1.109802 (0.0117537) 0.3328085 (0.0391115) 0.2827441 (0.03694239)

0.09182991 (0.004510189) 0.0004097881 (0.0004342463) 0.001782287 (0.0003082017) 0.6734424 (0.04400504) 0.7040377 (0.03527279)
q(0.75) 5.14974 (0.423687) 1.907388 (0.2081813) 1.108183 (0.01247685) 0.3232863 (0.03520504) 0.3217019 (0.03165553)

0.07545479 (0.003635486) 0.0004090452 (0.000394444) 0.001826502 (0.0003263631) 0.6635333 (0.04039317) 0.7380088 (0.03637818)
GLM 0.5873128 (0.06814438) 2.220233 (0.2283099) 0.2457962 (0.2544769) 0.3981225 (0.03141991) 0.2252249 (0.005732199)

0.001544791 (0.0008159843) 0.001144286 (0.0007005859) 0.154355 (0.05165686) 0.7472655 (0.04667404) 0.6595661 (0.01877794)

Table 4: The mean and (sd) for parameter(1st row) and Cramér distance (2nd row) based on different methods and different copulas

Cauchy Clayton Frank Gumbel Normal t (df=4)
itau 5.020746 (0.2754016) 12.13805 (0.5648465) 3.485702 (0.1372955) 0.9011049 (0.007734868) 0.9011049 (0.007734868)

0.0008905475 (0.0003974337) 0.002003717 (0.0006216668) 0.0001228918 (8.643768e-05) 3.04873 (0.0004111389) 3.046683 (0.00075509)
irho 4.96374 (0.3149087) 11.19294 (0.5681407) 3.419493 (0.1543944) 0.8920558 (0.009278915) 0.8920558 (0.009278915)

0.0008305017 (0.0004305138) 0.001076423 (0.0004769195) 0.0001604845 (0.0001279575) 3.0489 (0.0004261115) 3.046747 (0.0007437259)
mpl 3.256898 (0.1943582) 12.03472 (0.5399194) 3.32288 (0.1304416) 0.897043 (0.008644459) 0.9010679 (0.007250262)

0.003289592 (0.001265076) 0.001887763 (0.0005835376) 0.0002242443 (0.0001916005) 3.048807 (0.0004254471) 3.046684 (0.0007585141)
q(0.25) 18.73929 (1.299287) 12.97825 (0.867226) 1.717903 (0.03354662) 0.9201327 (0.008369305) 0.9016264 (0.009862516)

0.02472225 (0.001173588) 0.00301631 (0.001054648) 0.04919603 (0.003807738) 3.048274 (0.000420709) 3.046669 (0.0007464018)
q(0.50) 109.9589 (34.32165) 23.89952 (1.615271) 1.689724 (0.03003661) 0.9166894 (0.01178864) 0.900092 (0.01470639)

0.04046081 (0.001047012) 0.01560137 (0.001461331) 0.05247478 (0.003606004) 3.048358 (0.0004698031) 3.046649 (0.0007712813)
q(0.75) 15.21881 (1.243137) 12.92436 (0.8186823) 1.661964 (0.03243775) 0.9189895 (0.008637368) 0.9003902 (0.009853233)

0.021036 (0.001544408) 0.002943198 (0.001005811) 0.05597575 (0.004149634) 3.048308 (0.0004267481) 3.046681 (0.0007565585)
GLM 2.864082 (0.1523376) 10.38139 (0.3865085) 0.02927618 (0.003790814) 0.8162787 (0.006318219) 0.3148228 (0.004201301)

0.006577563 (0.001695343) 0.000494686 (0.0001873805) 1.767603 (0) 3.049181 (0.0005945993) 0.5490803 (0.007112585)

Table 5: The mean and (sd) for parameter(1st row) and Cramér distance (2nd row) based on different methods and different copulas
Normal Clayton Frank Gumbel Normal t (df=4)
itau 4.974676 (0.2418697) 12.04375 (0.4959966) 3.488032 (0.1048032) 0.8999215 (0.006750667) 0.8999215 (0.006750667)

0.0006288804 (0.0003868215) 0.001848868 (0.0005852485) 5.066503e-05 (6.522701e-05) 2.903314 (0) 2.903314 (0)
irho 5.232967 (0.2797341) 11.67597 (0.4966714) 3.576344 (0.1171607) 0.8996185 (0.007201842) 0.8996185 (0.007201842)

0.001083041 (0.0003868215) 0.001437082 (0.0005418999) 0.000116134 (0.0001220085) 2.903314 (0) 2.903314 (0)
mpl 2.990768 (0.1524266) 11.70848 (0.4915929) 3.182947 (0.09453462) 0.8998355 (0.006135488) 0.8838732 (0.007380673)

0.004750293 (0.001340524) 0.001471376 (0.0005422346) 0.0003522941 (0.0002747533) 2.903314 (0) 2.903314 (0)
q(0.25) 16.6853 (1.209538) 11.36454 (0.7780717) 1.666286 (0.02518844) 0.8999119 (0.01026184) 0.8795 (0.01198837)

0.02311366 (0.001278929) 0.001165907 (0.0008030268) 0.05413449 (0.003234027) 2.903314 (0) 2.903314 (0)
q(0.50) 90.16834 (24.8816) 21.43149 (2.06973) 1.636694 (0.0232912) 0.8995011 (0.01416515) 0.8829991 (0.01676574)

0.04011715 (0.00137752) 0.01351139 (0.002229634) 0.05799676 (0.003202957) 2.903314 (0) 2.903314 (0)
q(0.75) 13.77557 (0.901369) 11.31259 (0.6306088) 1.607161 (0.0243272) 0.9003276 (0.008839137) 0.8802001 (0.01023629)

0.01950232 (0.001298968) 0.001092559 (0.0005934812) 0.06215515 (0.003579388) 2.903314 (0) 2.903314 (0)
GLM 2.986528 (0.1503335) 10.69878 (0.3468778) 0.02785433 (0.001735336) 0.821169 (0.005246515) 0.317729 (0.003472342)

0.004786553 (0.001359574) 0.0005129631 (0.0002542829) 1.645124 (4.176584e-09) 2.903314 (0) 0.49552 (0.007522096)

Table 6: The mean and (sd) for parameter(1st row) and Cramér distance (2nd row) based on different methods and different copulas

t Clayton Frank Gumbel Normal t (df=4)
itau 5.020746 (0.2754016) 12.13805 (0.5648465) 3.485702 (0.1372955) 0.9011049 (0.007734868) 0.9011049 (0.007734868)

0.0007321414 (0.0004329405) 0.001988042 (0.0006621676) 8.070655e-05 (9.936043e-05) 2.985174 (1.287815e-05) 2.98512 (1.510214e-05)
irho 4.96374 (0.3149087) 11.19294 (0.5681407) 3.419493 (0.1543944) 0.8920558 (0.009278915) 0.8920558 (0.009278915)

0.0006641577 (0.0004709457) 0.000987452 (0.0005239334) 0.0001006437 (0.0001125403) 2.985177 (1.261057e-05) 2.985122 (1.465302e-05)
mpl 3.256898 (0.1943582) 12.03472 (0.5399194) 3.32288 (0.1304416) 0.897043 (0.008644459) 0.9010679 (0.007250262)

0.002828245 (0.001221514) 0.0018648 (0.0006228675) 0.0001384507 (0.0001611368) 2.985175 (1.282694e-05) 2.98512 (1.516303e-05)
q(0.25) 18.73929 (1.299287) 12.97825 (0.867226) 1.717903 (0.03354662) 0.9201327 (0.008369305) 0.9016264 (0.009862516)

0.02514491 (0.001188977) 0.003054616 (0.001108994) 0.04806146 (0.003760178) 2.985167 (1.470355e-05) 2.98512 (1.493526e-05)
q(0.50) 109.9589 (34.32165) 23.89952 (1.615271) 1.689724 (0.03003661) 0.9166894 (0.01178864) 0.900092 (0.01470639)

0.04099707 (0.001048899) 0.01598359 (0.001485625) 0.05129966 (0.003561991) 2.985168 (1.501052e-05) 2.985119 (1.592811e-05)
q(0.75) 15.21881 (1.243137) 12.92436 (0.8186823) 1.661964 (0.03243775) 0.9189895 (0.008637368) 0.9003902 (0.009853233)

0.02140661 (0.00156805) 0.002978578 (0.001056577) 0.05475874 (0.004100294) 2.985167 (1.494597e-05) 2.98512 (1.530028e-05)
GLM 2.864082 (0.1523376) 10.38139 (0.3865085) 0.02927618 (0.003790814) 0.8162787 (0.006318219) 0.3148228 (0.004201301)

0.006020398 (0.00165502) 0.0003340173 (0.000222922) 1.72388 (9.7817e-09) 2.985172 (1.154915e-05) 0.5272869 (0.007040003)

The tables present the mean and standard deviation for parameters of different copulas and their cor-
responding Cramér distance. The first table is based on the data generated from Logistic distribution,
which is an extreme value distribution function. For this distribution, when the copulas are Clayton
and Gumbel, pml gives better result. For other copulas, quantile regression method dominates other
approaches. Copula-quantile regression at 50%, 25% and 50% performs better than other methods when
the underlying copulas are Frank, Normal and t (df=4), respectively. However, the results obtained by
different methods is not significantly different when copulas are elliptical. The second table shows the
results for Hüsler-Reiss distribution, which is another extreme value distribution function under study.
Similar to Logistic distribution, the performance of pml is better than other approaches when the copulas
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are Clayton and Gumbel. Moreover, when the copula is Frank, quantile regression at 25% gives better re-
sult. Although not significantly different, the Cramér distance given by irho is lower than copula-quantile
regression at 75% when the copula is normal. GLM performs well when copula is t. Three other distri-
butions from which the data are simulated are elliptical. The third table belongs to the data generated
from Cauchy distribution, which is also a heavy-tailed distribution function. Inverse of Spearman’s rho
with Clayton copula does better than other estimation methods. Inverse of Kendall’s tau performs well
when the copula is Gumbel. GLM supersedes other approaches when the copulas are Frank and t. The
Cramér distance obtained by different methods is roughly the same when the copula is normal. For two
other elliptical distributions i.e. normal and t distributions, the performance of the estimation methods
with the corresponding copulas is the same. The only difference is that for normally distributed data,
itau performs better than irho when the copula is Clayton. In general, the copula-quantile regression
is a better approach when the data are heavy-tailed and the GLM gives rise to better result when the
data are elliptically distributed. However, with the latter the performance is the worst when copula is
Gumbel regardless of the type of data.Finally, one can conclude that the estimation methods are more
dependent on the type of data than the chosen copula. Therefore, it is suggested to check the data and
their distributions and then pick a method that is supposed to perform better than other methods.

3 Conclusion

Copulas’ parameter estimation is the first step in copula modeling. In this study, for the first time, to
the best of the authors’ knowledge, the copula-quantile regression is included in a simulation study that
compares different approaches for parameter evaluation. As is expected such method is only a good
approach when data are from extreme value distributions. Also a new method which is based on GLM
is proposed for estimating the parameters of copulas. The results indicate that GLM performs better
than other methods when data have an elliptical distribution. Therefore, it is suggested to check the
distribution of data before selecting a particular estimation method. An extensive simulation study that
contains more distributions , say, heavy-tailed, mixed distributions and more copulas must be carried out
to assert this suggestion more firmly. Moreover, based on the findings of the simulation study, in spite
of the performance of copula quantile regression and the GLM method which is relatively better than
others for different distributions, the pml performs relatively well in all situations. This approach turn
out to be the preferred method according to Kojadinovic & Yan (2010), Tsukahara (2005) and Kim et.
el. (2007).
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[2] Bouyé E. & Salmon M. (2009). Dynamic copula quantile regressions and tail area dynamic depen-
dence in Forex markets. European Journal of Finance. 15, 721–750.

[3] Brahimi B. & Necir A. (2012). A semiparametric estimation of copula models based on the method
of moments, Statistical Methodology. 9, 467–477.

[4] Cherubini U., Luciano E., Vecchiato W. (2004).Copula methods in finance . Wily, England

[5] Embrechts P., McNeil A., & Straumann D. (2002). Correlation and dependency in risk manage-
ment: Properties and pitfalls, in: M. Dempster, ed., Risk Management: Value at Risk and Beyond
(Cambridge: Cambridge University Press), 176-223.

[6] Frees E. W. & Valdez E. A. (1998). Understanding relationships using copulas, North American
Actuarial Journal, 1, 1–25.

[7] Genest C. (1987). Frank’s family of bivariate distributions, Biometrika, 74, 549–555.



40 2nd Workshop on Copula and its Applications

[8] Genest C. & Favre A.C. (2007). Everything you always wanted to know about copula modeling but
were afraid to ask. Journal of Hydrologic Engineering, 12, 347-368.

[9] Genest C., Ghoudi K.& River L.P. (1995). A semiparametric estimation procedure of dependence
parameters in multivariate families of distributions. Biometrika, 82, 543–552.

[10] Haan L., Neves C. & Peng L. (2008). Parametric tail copula estimation and model testing, Journal
of Multivariate Analysis, 99, 1260–1275.

[11] Joe H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models.
Journal of Multivariate Analysis, 94, 401–419.

[12] Kim G., Silvapulle M. & Silvapulle P. (2007). Comparison of semiparametric and parametric meth-
ods for estimating copulas, Computational Statistics & Data Analysis, 51, 2836–2850.

[13] Kojadinovic I. & Yan J. (2010). Comparison of three semiparametric methods for estimating de-
pendence parameters in copula models. Insurance: Mathematics and Economics, 47,52–63.

[14] Kotz S. & Nadarajah S. (2000). Extreme value distributions: theory and applications. Imperial
College press.

[15] Parsa R. & Klugman S.A. (2011). Copula regression, Variance Advancing and Science of Risk, 5,
45–54.

[16] Qu X., Zhou J. & Shen X. (2009). Archimedean copula estimation and model selection via L1-norm
symetric distribution, Insurance: Mathematics and Economics, 46, 406–414.

[17] Tsukahara H.(2005). Semiparametric estimation in copula models, The Canadian Journal of Statis-
tics, 33, 357–375.

[18] Vandenhende F. & Lambert P. (2005). Local dependence estimation using semiparametric
Archimedean copulas, The Canadian Journal of Statistics, 33, 377–388.

[19] R Development Core Team (2011). R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-
project.org/.

[20] Diethelm Wuertz, many others and see the SOURCE file (2009). fCopulae: Rmet-
rics - Dependence Structures with Copulas. R package version 2110.78. http://CRAN.R-
project.org/package=fCopulae

[21] Roger Koenker ¡rkoenker@uiuc.edu¿ (2011). quantreg: Quantile Regression. R package version 4.71.
http://CRAN.R-project.org/package=quantreg



Pair-Copula constructions for a Multivariate

Distribution:Parametric and Non-parametric methods

Poorahmadi, M. and Daneshkhah, A.

of Statistics, Faculty of Mathematical Sciences Shahid Chamran University, Ahvaz,

Abstract

This paper focuses on the two methodologies, one of them is a new method proposed by Bedford
and Daneshkhah [3] using the Vines as a way of constructing higher dimensional distributions. Us-
ing this method, one can approximate any multivariate density as closely as one likes based on the
approximated vines. Each pair-copula which is used in constructing the vine is replaced by the mini-
mum information copula ([4], [3]) in conjunction with the information provided from the constraints
(on moments, rank correlation, expert elicitation of observables) to define a copula that represents
the joint distribution of two random variables of interests.

In the second method, the parametric copula is fitted to each pair-copula considered in the vine
construction. The main difficulty in this method is to select the suitable pair-copula families. We use
the different tools including contour plots, λ- function and Goodness-of-Fit (GOF) tests, to find the
appropriate distributions in the D-vine decomposition.

We eventually apply these methods to approximate a joint distribution of the three variables
associated with the Iran’s financial data: gross domestic production, oil income index, inflation
index.

Keywords: entropy, Lambda plot, minimum information copula, pair-copula, vine.

1 Introduction

There is a growing literature on the use of copulas to model dependencies (see e.g. Kurowicka 2006;
Bedford et al, 2012 and reference therein). There are vast applications of Copulas in the different
areas of operations research including combining expert opinion and stochastic simulation. A copula is
a joint distribution on the unit square (or more generally on the unit n-cube) with uniform marginal
distributions. Under reasonable conditions, a joint distribution for n random variables can be uniquely
specify by determining the univariate distribution for each variable, and in addition, specifying the copula.
The reason is that each variable can be simply transformed by its own distribution function to make sure
that the derived variable is uniformly distributed.

Bedford et al (2012) illustrated that the use of a copula to model dependency is simply and clearly
a translation of one difficult problem into another: instead of the difficulty of specifying the full joint
distribution we have the difficulty of specifying the copula. As many authors restrict the copulas to a
particular parametric class (Gaussian, multivariate t, etc) the potential flexibility of the copula approach
is not realized in practice. In addition, it is clear that specifying a multivariate copulas for the high-
dimensional (larger than 2) data-set in comparison to the class of bivariate copulas is much harder. Bed-
ford and Cooke (2002) developed a graphical model, called regular vines or pair-copula, to decompose
high-dimensional copula into a group of bivariate copulas. As a results, a multivariate density can be
decomposed into a cascade of bivariate copulae. We briefly discuss the pair-copula construction in the
next section.

We follow Bedford et al [3], using any vine structure, to approximate any given multivariate copula to
any required degree of approximation. The technical assumption is required here is that the multivariate
density f under of interests with the uniform marginals should be continuous and non-zero.

This approximation approach is based on the minimum information copulas ([4]) that can be specified
to any required degree of precision based on the data available. It is proved that good approximation
‘locally’ guarantees good approximation globally. The advantage of this method is that a vine structure
imposes no restrictions on the underlying joint probability distribution it represents (as opposed to the
situation for Bayesian networks, see Bedford et al, 2012).
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Our main contribution to this paper is applying this method to approximate a joint distribution of
Iran financial variables including the Investment index, the petroleum export and the Gross Domestic
Production index by using some constraints on the moments and rank correlation which created a new
base to approximate the joint density.

The rest of the paper is organized as follows. In Section 2, we first briefly introduce the pair-copulae
models. In Section 3, we first explain the D1AD2 algorithm and the minimum information copulae, we
then extend this idea to build a minimally informative pair-copular given the constraints provided from
either the expert or data, and from there we can approximate the corresponding multivariate distribution
associated with the aforementioned variables of interest to any required degree of precision. In Section
4, we first fit a parametric distribution to each 2-dimensional copula constructing the vine using some
well-known tools and then obtain the multivariate distribution associated with these variables, we then
using the non-parametric approach mentioned in Section 3, based on some constraints calculated from
the Iran financial data, a minimally informative copula for each pair-copula and the corresponding joint
density function D-vine are approximated.

2 Pair-copulae constructions of multiple dependencies

Consider n random variables X = (X1, . . . , Xn) with a joint density function f(x1, . . . , xn). This density
can be factorised as

f(x1, . . . , xn) = f(xn)f(xn−1|xn)f(xn−2|xn−1, xn) . . . f(x1|x2, . . . , xn)

and this decomposition is unique up to a relabelling of the variables.

As mentioned above, a copula is multivariate distribution, C, with uniformly distributed marginals
U(0, 1) on [0, 1]. Sklars theorem states that every multivariate distribution F with marginals F1, F2, . . . , Fn
can be written as

F (x1, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (1)

for some appropriate n-dimensional copula C.

Passing to the joint density function f , for an absolutely continuous F with strictly increasing, con-
tinuous marginal densities F1, . . . , Fn, we have

f(x1, . . . , xn) = c12...n(F1(x1), . . . Fn(xn))f1(x1) . . . fn(xn)

for some (uniquely identified) n-variate copula density c12...n(·).
Bedford and Cooke [2] proposed a more flexible structure, called vine (or pair-copula by Aas et al,

2009) which allows for the free specification of (at least) n(n − 1)/2 copulas between n variables. The
modelling scheme is based on a decomposition of a multivariate density into a set of bivariate copulae.
Due to lack of space, we explain a vine structure further using the following example.

The density decomposition associated with 3 random variables X = (X1, X2, X3) with a joint density
function f(x1, x2, x3) satisfying a copula-vine structure (called D-vine, see [6], pp. 93) with the marginal
densities f1, f2, f3 is

f123(x1, x2, x3) =

3∏
i=1

f(xi)c12 (F (x1), F (x2)) c23 (F (x2), F (x3)) c13|2 (F (x1 | x2), F (x3 | x2)) (2)

The above factorisation gives us a constructive approach to build a multivariate distribution given a
vine structure: If we make choices of marginal densities and copulae then the above formula will give
us a multivariate density. Hence vines can be used to model general multivariate densities. However, in
practice we have to use copulas from a convenient class, and this class should ideally be one that allows
us to approximate any given copula to an arbitrary degree. By having this class of copulas, we then can
approximate any multivariate distribution using any vine structure.
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3 Constructing bivariate minimum information copulas

Bedford et al [3] present a way to approximate a copula using minimum information methods which
demonstrate uniform approximation in the class of copulae used.

Bedford and Meeuwissen ([4]) applied a so-called DAD algorithm to produce discretized minimally
informative copula with given rank correlation. This approach can be used whenever we wish to specify
the expectation of any symmetric function of U = F (x) and V = F (y). In order to have asymmet-
ric specifications we need to use the D1AD2 algorithm where A is a positive square matrix, and we
can find diagonal matrices D1 and D2 such that the product of D1AD2 is doubly stochastic. For the
variables of interest X and Y , we would like to correlate them by introducing constraints based on
some knowledge about functions of these variables. Suppose there are k of these functions, namely
h′1(X,Y ), h′2(X,Y ), . . . , h′k(X,Y ), and we specify mean values α1, . . . , αk for all these functions respec-
tively from the data or the expert judgment. We can find corresponding functions of the copula variables
U and V , defined by h1(U, V ) = h′1(F

−1
1 (U);F−1

2 (V )), etc., and clearly these should also have the specified
expectation α1. We form the kernel

A(u, v) = exp(λ1h1(u, v) + . . .+ λkhk(u, v)) (3)

where u denote the realization of U and v the realization of V .
For practical implementations we have to discretize the set of (u, v) values such that the whole domain

of the copula is covered. This means that the kernel A described above becomes a 2-dimensional matrix
A and that we seek the matrices D1 and D2 to create a discretized copula density P = D1AD2.

Suppose that both U and V are discretized into n points, respectively ui, and vj ,

i, j = 1, . . . , n. Then we write A = (aij), D1 = diag(d
(1)
1 , . . . , d

(1)
n ), D2 = diag(d

(2)
1 , . . . , d

(2)
n ), where

aij = A(ui, vj), d
(1)
i = D1(ui), d

(2)
j = D2(vj). The double stochastically of D1AD2 with the extra

assumption of uniform marginals means that

∀i = 1, . . . n
∑
j

d
(1)
i d

(2)
j aij = 1/n, and ∀j = 1, . . . n

∑
1

d
(1)
i d

(2)
j aij = 1/n,

since for any given i and j the selected cell size in the unit square is 1/n2. Hence

d
(1)
i =

n∑
j d

(2)
j aij

and d
(2)
j =

n∑
i d

(1)
i aij

This iteration converges geometrically to give us the vectors required. The D1AD2 algorithm works by
fixed point iteration and is closely related to iterative proportional fitting algorithms.

Bedford et al (2012) discussed that, for a given set of functions (h1, . . . , hk), the mapping from the
set of vectors of λs parameterizing the kernel A onto the expectations of the function (α1, . . . , αk) has to
be found numerically, and optimization techniques are used to achieve this. We wish to determine the
appropriate set of λs for given expectations αi, where the expectations have been calculated using the
discrete copula density D1AD2. We define

Ll(λ1, . . . , λk) :=
1

n2

n∑
i=1

n∑
j=1

d(1)(ui)d
(2)(vj)A(ui, vj)hl(ui, vj)− αl, l = 1, 2, . . . , k. (4)

We seek the roots of these functions. One of the possible solvers for this task would be FSOLVE -
MATLAB’s optimization routine.

It can be shown that a multivariate distribution can be arbitrarily well approximated by using a
fixed family of bivariate copulae . A key step to demonstrating this is to show that the family of
bivariate (conditional) copula densities contained in a given multivariate distribution forms a compact
set in the space of continuous functions on [0, 1]2. Based on this we can then show that the same finite
parameter family of copulae can be used to give a given level of approximation to all conditional copulae
simultaneously (see Bedford et al. (2012) for the proof and further discussion)

We now able to approximate any copula using a linear functions, called bases. We denote C([0, 1]2)
as the space of continuous real valued functions on a [0, 1]2, this space can be considered as a vector
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space, and in this context a basis is simply sequence of functions h1, h2, · · · ∈ C([0, 1]2) for which any
function g ∈ C([0, 1]2) can be written as g =

∑∞
i=1 λihi. There are lots of possible bases, for example,

u, v, uv, u2, v2, u2vuv2, . . . .
Given an ordered basis h1, h2, · · · ∈ C([0, 1]2) and a required degree of approximation ϵ > 0 in the

sup metric, any density which is positive and uniformly bounded away from 0, can be approximated to
within error ϵ > 0 by a linear combination of h1, h2, . . . , hk (see Bedford et al. (2012) for further details).

4 Application: Iran’s Financial data

In this section, we study three time series of seasonal data in Iran for the period from 20.03.1990 to
20.03.2007. For further notations, we denote the variable with observations converted from the three
indices as follows: A: Gross Domestic Production; B: oil income index; C: inflation Index. We first
make the data independent. Therefore, we can use the transformed standardized residuals ARMA(1,1)-
GARCH(1,1) model instead of the original data, to capture the dependency between the variables and
approximate their density function. We first fit the parametric distribution taken from the different
families for each copula in the vine construction. Note that, the first tree in a D-vine structure is
uniquely determined as C −B−A. The whole D-vine structure will then be simply determined after the
first tree is specified.

4.1 Pair-copula constructions based on the Parametric bivariate copula

After finding the tree for the first level we have to fit a copula density to each bivariate copula in the
first level to be able to fit a density to the other levels of the D-vine structure. Therefore, we use three
different methods to select an appropriate copula for the underlying data. Two of them are graphical
methods, the contour plots and the λ-function. The third one will be a statistic test. But notice, all these
methods give only a hint of the true copula family and are not methods to identify the copula family
uniquely. With these three methods together we try to reduce the set of possible copula families and end
up with a good guess.

The first method is to look at the behavior of the empirical data with respect to their Kendalls τ and
density function. The density function can be illustrated in the so called contour plot. We derive the
empirical density function of the data and plot it in a contour plot. We then compare this density with
the theoretical density of possible copula families using their contour plots. We choose the Normal(N),
t-student (t), Clayton (C), Gumbel (G), Frank (F), BB1- and BB7-copula to compare with the empirical
contour plot. Figure 1 displays the empirical contour plot. Since the empirical contour plot had a

Figure 1: Empirical contour plot

tendency in the lower left and the upper right corner, we can reject the Clayton, Gumbel and Frank
copula. We decide that t- , BB1- and BB7- may fit the data well. The Gaussian copula does not have
the tail dependency and can not be detected from the empirical contour plot. But from the results of
the several tests, it can be concluded that the Gaussian copula may also be a good fit (see Karimi et al,
2012).
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As one can see the contour plots of BB1- and BB7- copulas and their flouting intersections cannot
be helpful to decide which of these should be accepted, so we need some other methods. Another useful
graphical method is the λ-function at which their plots should be a help to identify the underlying copula.
Similar to the contour plots, one derives the empirical Kendalls τ and the empirical λ-function for the
data. Then, the λ-functions assassinated with the possible copulas are calculated and the resulting plots
are compared to each other. Figure 2 shows the plots of empirical λ and 7 corresponding theoretical λ
for pair (C,B). In each plot we draw the empirical version (black line), the theoretical version (grey line)
and the extreme values of the λ-function (dashed lines).

Figure 2: The empirical λ-function of the pair-copula (C,B)(first plot) and the theoretical copula.

We can reject the Clayton, the Gumbel, the Frank and the BB1-copula. The BB7-copula can not
be rejected, because it is near the empirical λ function. The λ-function of the Normal and t-copula fit
the empirical λ-function well as well, i.e. the grey (theoretical) and black (empirical) lines in the figure
overlap.

Beside the two graphical methods explained above, there are some goodness-of-fit tests. One of them
is based on the Kendall’s transform. These tests are often used in statistical hypothesis testing, in our
case we test the hypothesis that if a chosen copula fits the underlying copula of the data well. We
calculate the p-values based on the Kendall’s transform corresponding to the Carmer von Mises Sn and
Kolmogorov Smirnov Tn statistics. We calculate the p-values of the candidate copula for the pair (C, B)
at which we can conclude that t-copula has the highest p-value (0.6 for Sn and 0.52 for Tn)s. Thus, from
the goodness of fit tests and the graphical tools, we choose the t-copula for the pair (C, B) in the first
tree. The same routine will be done for the next copulas. Note that for the nodes C, B and A in the
first tree, we used their observations as the underlying data directly, but for the second tree (conditional
copula), we first need to compute the conditional distribution function and then use the derived data as
the underlying data in each node. Eventually, we complete the D-vine decomposition and determine the
most appropriate model for the pair-copula in each step. We conclude that a t- copula is the best choice
for pair the (B,A) while a Normal-copula is the best good choice for the copula between (C | B,A | B) in
the second tree. Therefore, the multivariate–three-dimensional given in (2) can be derived by replacing
the selected copula in the given decomposition.

4.2 Constructing approximations using minimally informative distributions

We first present the practical guide (given in Bedford et al (2012) in details) to build a minimally
informative copulas structure briefly discussed above to approximate any multivariate distribution. A
multivariate distribution can be approximated as follows:

• Specify a basic family
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Interval Bases Lagrange multipliers Log-like
0 < B < 0.25 (C3A2, CA2, A2C4, A5C,C2A5) (14.4,35.9,16.6,-26.9,53.6) 9.93
0.25 < B < 0.5 (CA2, C3A2, A4C4, A5C4, C3A) (0.65,0.8,-3.5,1.4,-0.33) 11.67
0.5 < B < 0.75 (A3C,C3A3, A2C2, AC2, C2A4) (-12.4,-23.4,98.4,77.7,66.4) 12.43
0.75 < B < 1 (CA4, C4A,AC3, A5C2, C3A4) (5.2,4.3,-4.4,1.5,-6.9) 6.45

Table 1: Bases, parameter values and log-likelihoods for CTB|M

• Specify a pair-copula structure

• For each part of pair-copula specify either, (1) mean α1, . . . , αk for h1, . . . , hk on each pairwise
copula; (2) functions αm(ji | De) for the mean values as functions of the conditioning variables, for
m = 1, . . . , k, where De is the conditioning set for the edge e.

As an example, we use the Iran’s financial data described above to show the construction of a mini-
mally informative copula between two variables A and B denoted by cAB under the following simple
polynomials and moving to more complex constraints: h′1(A,B) = AB, h′2(A,B) = A2B, h′3(A,B) =
B2A2, h′4(A,B) = A3B, h′5(A,B) = A2B2, h′6(A,B) = B3A, . . .

We propose to assess the log-likelihood of adding each additional basis function to improve the ap-
proximation precision. We include the function which produces the largest increase in the log-likelihood
(further details can be found in Bedford eta l, 2012). Thus our method is similar to a stepwise regression.
We first yield the initial copula in terms of the following basis functions: A4B,B3A2, A2B4, A5B2, B2A2.

The number of discretization points (or grid size) is another factor that would effect the approximation.
A larger grid size will provide a better approximation to the continuous copula. In order to be consistent
throughout the rest of the example, we choose a grid size of 200 by 200 points.

The constraints placed on (A,B) and proposed as the initial bases are A4B = 0.2231, B3A2 =
0.3586, A2B4 = 0.5902, A5B2 = 0.7590, B2A2 = 0.4113. We confirm that the D1AD2 have converged
given the mentioned constraints. The lambda values associated with the fitted minimum information
copula to these constraints are λ1 = .583, λ2.274, λ3 = 26.307, λ4 = 128.045, λ5 = 6.569, λ5 = .3.910, and
the corresponding log-likelihood is lAB = 35.32. Similarly, we construct the second copula in the first
tree which is denoted by cBC . The calculated log-likelihood for cBC is lBC = 21.17.

The conditional copulas in the second tree can similarly be approximated using the minimum infor-
mation approach. Initially we construct the conditional minimum information copula between C|B and
A|B. In order to calculate this copula we divide the support of B into some arbitrary sub-intervals or
bins and then construct the conditional copula within each bin. To do so we find bases in the same way
as for the marginal copulas and fit the copulas to the expectations calculated for these. We use five bins
so that the first copula is for A,C|B ∈ (0, 0.25). Let us consider the first bin as I1 = (0.0.025). The bases
for this copula are

[h′1(A,C) | B ∈ I1] = A2C3, [h′2(A,C) | B ∈ I1] = CA2, [h′3(A,C) | B ∈ I1] = A2C4

[h′4(A,C) | B ∈ I1] = A5C, [h′5(A,C) | B ∈ I1] = A5C2

We do the same for the remaining bins. Table 1 shows the constraints and corresponding Lagrange
multipliers required to build the conditional minimum information copula between A,C | B ∈ (0, 1). It
also gives the log-likelihood in each bin. The density approximation presented above using the minimum
information copula illustrates a very good performance and precision on in comparison to the parametric
approaches explain in this paper. In order to make a comparison between these two methods, we have
computed the log-likelihoods of the fitted copulas (the parametric copula and the minimum information
based copula) to the data for the same vine structure. The results show that the log-likelihood corre-
sponding the parametric approach by choosing the t-copula for the bivariate copulas in the first tree and
the Gaussian copula on the conditional copula on the second tree is 80.28, while the log-likelihood corre-
sponding to the minimum information based copula fitted to each bivariate copula in the vine structure
is 97.42. Bedford et al (2012) reported the similar results when they study the Norwegian financial data
with four variables.
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5 Conclusion

In this paper, we briefly review the method of Bedford et al. (2012) [3] to approximate a multivariate
distribution by any vine structure to any degree of approximation. We have operationalized the theoretical
approximation results by using minimum information copulas that can be specified to any required degree
of precision based on the data available. It can be shown that that good approximation ‘locally’ guarantees
good approximation globally (Bedford et al., 2012). We can use the same bases to approximate each
copula in each tree of the corresponding vine, with the promise of a uniform level of approximation.
Another objective of this paper was to find appropriate data analysis tools to determine the D-vine
structure and a suitable parametric copula family for each bivariate copula in the vine structure. To sum
it up, the methods discussed in this paper allow to efficiently construct D-vine models even in higher
dimensions. The results derived in this paper show that the new method proposed by Bedford et al.
(2012) is outperformed the parametric method.

We have extended this method by using the Fourier series and some other orthonormal series as the
basis functions to approximate the positive and continuous density function by truncating the series at an
appropriate point. The derived results shows a considerable improvement in the density approximation
and faster computation. This is can be seen in a working paper by the authors in [7].
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