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Abstract

The concept of ‘signature’ is a useful tool to study the stochastic and aging properties of coherent
systems. We consider a coherent system, and assume that there is some partial information about
the failure status of the system lifetime. We study various properties of the conditional signature.

Keywords and Phrases: Order statistics, stochastic order, residual lifetime, inactivity time.
AMS Subject Classification 2000: primary 68M15; secondary 62G30 .

1 Introduction

A system consisting of n components is said to be a coherent system if it has no irrelevant components (a
component is said to be irrelevant if its performance does not effect the performance of the system), and
the structure function of the system is monotone in every component (that is, when a failed component
is replaced by a working component the working system does not fail). In recent years, researchers
have studied various aspects of the reliability and aging specifications of coherent systems. Asadi and
Bayramoglu [1] studied the mean residual life function of k-out-of-n structures at the system level.
Tavangar and Asadi [15] investigated the mean inactivity time of the components of (n− k+1)-out-of-n
systems at the system level. Khaledi and Shaked [6] obtained signature-based stochastic comparisons
between the residual lifetimes of coherent systems. Asadi and Goliforushani [2] explored aging properties
of coherent systems when the vector of the signature satisfies some conditions. Li and Zhang [8] obtained
stochastic ordering results on conditional coherent systems on the basis of the signature concept. Eryılmaz
[3] explored the properties of the residual lifetime of linear consecutive k-out-of-n systems based on the
definition of signature. Eryılmaz and Zuo [4] compute the signature of a system with two common failure
criteria.

Suppose that a coherent system with n components has statistically independent and identically
distributed lifetimes X1, X2, ..., Xn with a common continuous distribution F . Let T = T (X1, ..., Xn)
denote the lifetime of the system. The signature of the system is defined to be a probability vector
s = (s1, s2, ..., sn) such that

si = P (T = Xi:n), i = 1, 2, ..., n. (1)

It can be shown that si = ni/n!, where ni is the number of ways that distinct X1, X2, . . . , Xn can be
ordered such that T (x1, ..., xn) = xi:n, i = 1, ..., n, where xi:n is the value of Xi:n; see Samaniego [3].

The probability si is in fact the probability that the component with lifetime Xi:n causes the failure
of the system. As the signature vector s does not depend on the common distribution function of Xi, the
survival function of T , denoted by F̄T (t), can be written as a mixture of the survival functions of Xi:n,
denoted by F̄i:n(t) i = 1, 2, ..., n, with weights s1, s2, ..., sn. In other words, F̄T (t) can be represented as

F̄T (t) =
n∑

i=1

siF̄i:n(t). (2)

This result enables one to study the stochastic and aging properties of a coherent system based on the
properties of its signatures. Kochar et al. [2] showed that, for two coherent systems with lifetimes T1 and
T2, if the signature vector of the first system is stochastically less than the signature vector of the second
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one, then T1 is also stochastically less than T2. Navarro et al. [9]-[11] used the concept of signature
to compare the reliability of coherent systems when the components are not necessarily statistically
independent. In a recent study, Navarro et al. [12] introduced the concept of joint signature for coherent
systems with shared components (see also, Navarro [13] for more developments on the reliability properties
of coherent systems).

In reliability engineering, usually the operators of the systems may have some partial information
about the lifetime of the system, and based on that information they may be interested in getting
information about the failure probability of the system. For example, an operator may know that, at
time t > 0, the system is still operating, i.e. T > t, or the exact failure time of the system is t, i.e. T = t.
In this context, it could be interesting for the operator to investigate which component of the system is
more probable to cause the failure of the system.

This paper is an investigation of the properties of the signature of a coherent system under the
condition that, at time t, some information about the status of the system lifetime is available. In a
general setup, we assume that the lifetime of the system T is in a subset of the positive real line, i.e,
T ∈ A ⊆ [0,∞). Then, we are interested in investigating the properties of the conditional probability

pi(A) = P (T = Xi:n|T ∈ A) i = 1, 2, ..., n.

pi(A) is the probability that the component with lifetime Xi:n causes the failure of the system under the
condition that the system lifetime is known to be in the set A. Obviously, when A = [0,∞), we have
pi(A) = si, i = 1, 2, ..., n, where si is the ith element of the signature of the system given in (1). There
are three choices for set A which are of more particular interest.

(i) the set A = {t} corresponds to the immediate failure of the system. For this choice of A, the
operator knows that the exact failure time of the system is t.

(ii) the set A = (t,∞) corresponds to the residual lifetime of the system. That is, for this choice of A,
the operator knows that the system is still working at time t.

(iii) the set A = [0, t) corresponds to the inactivity time of the system. For this choice of A, the operator
knows that the system has failed sometime before time t.

Recently, Navarro et al. [10] (see also Zhang [16], and Zhang and Yang [18]) have obtained some results
on pi(A) when A = (t,∞). Goliforushani and Asadi [5] (see also Zhang [17]) have investigated some
properties of pi(A) when A = (0, t).

In Section 2, we first derive the form of the conditional probability pi(A) for an arbitrary subset
A of the positive real line. Then, we explore some properties of pi(A) where A is assumed to be in the
forms of parts (i)-(iii). In the sequel, we will study the behavior of pi(A) in each part when t tends either
to infinity, or tends to zero. And we will show that, for two coherent systems, if the components of the
systems are stochastically ordered, then the corresponding conditional signatures of the systems are also
stochastically ordered.

2 Main Results

Consider a coherent system consisting of n statistically independent and identically distributed compo-
nents with ordered lifetimes X1:n, X2:n, ..., Xn:n, and signature vector s = (s1, s2, ..., sn). Let A ⊆ [0,∞).
Then, provided that P (T ∈ A) > 0, we have
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pi(A) = P (T = Xi:n|T ∈ A)

=
P (T = Xi:n, T ∈ A)

P (T ∈ A)

=
P (T ∈ A|T = Xi:n)P (T = Xi:n)

P (T ∈ A)

=
P (Xi:n ∈ A|T = Xi:n)P (T = Xi:n)

P (T ∈ A)

=
siP (Xi:n ∈ A)∑n
j=1 sjP (Xi:n ∈ A)

, i = 1, 2, ..., n, (3)

where the last equality follows from the fact that events {T = Xi:n} (which does not depend on the
underlying distribution function) and {Xi:n ∈ A} are statistically independent.

The probability pi(A) can be interpreted in a Bayesian point of view. Assume that the probability
vector s = (s1, s2, ..., sn) denotes a prior distribution in which si, i = 1, 2, ..., n shows the probability that
the system lifetime is equal to the ordered lifetime Xi:n before the system is put in operation. This result
can be viewed as the prior belief of the system designer about the probability of the failure time of the
system when the system has not yet been used. Now assume that the system is put in operation at time
t = 0, and the designer has the information (data) that, for example, at time t > 0, the system is still
working; that is to say T > t. Under these circumstances, the probability pi(A), where A = (t,∞), can
be considered as the posterior belief (posterior distribution) of the designer on the probability of failure
time of the system given that the system is alive at time t. In the following, we consider the three
different cases (i), (ii), and (iii).

(i) The first case which we are interested in is the set A = {t}. In this case, pi(A) is given as

pi(t) = P (T = Xi:n|T = t), i = 1, 2, . . . , n.

Under the assumption that F is absolutely continuous with density function f , and survival function
F̄ = 1− F , we can show that pi(t), i = 1, 2, ..., n, is given as

pi(t) =
sifi:n(t)∑n

j=1 sjfj:n(t)
, t > 0, (4)

where

fi:n(t) =
n!

(i− 1)!(n− i)!
f(t)F i−1(t)F̄n−i(t), t > 0

is the density function of Xi:n. Denote ϕ(t) = F (t)/F̄ (t) for t such that F̄ (t) > 0, the odds of the
event that a component has a lifetime less than t. Then,

pi(t) =
ci,nsiϕ

i−1(t)∑n
j=1 cj,nsjϕ

j−1(t)
, i = 1, 2 . . . , n, (5)

where ci,n = n!
(i−1)!(n−i)! , i = 1, 2, . . . , n. We call the dynamic vector

p(t) = (p1(t), p2(t), ..., pn(t))

as the vector of the signature associated with the immediate failure of the system. Note that pi(t)
does not depend on the density function f .

In the sequel, we assume that Y is a discrete random variable with probability mass function pi(t),
and denote its survival function by P̄j(t), i.e. we assume that pi(t) = P (Y = i), i = 1, 2, ..., n, and
P̄j(t) = P (Y ≥ j) =

∑n
k=j pk(t), j = 1, 2, . . . , n.
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(ii) The second case that we consider for A is A = (t,∞), which is related to the residual lifetime of the
system. In this case, pi(A), which we denote it by qi(t), i = 1, 2, . . . , n, is

qi(t) = P (T = Xi:n|T > t)

=
siF̄i:n(t)∑n

j=1 sjF̄j:n(t)
, (6)

where

F̄i:n(t) =
i−1∑
k=0

(
n

k

)
F k(t)F̄n−k(t).

The dynamic vector q(t) = (q1(t), q2(t), ..., qn(t)) is called the vector of the residual signature of
the system. It is easy to show that qi(t) can be represented in terms of ϕ(t) as

qi(t) =
si
∑i−1

m=0

(
n
m

)
ϕm(t)∑n

j=1 sj
∑j−1

m=0

(
n
m

)
ϕm(t)

, i = 1, 2, . . . , n.

We assume that Y1 is a discrete random variable with probability mass function qi(t) = P (Y1 = i),
i = 1, 2, ..., n, and denote the corresponding survival function by Q̄j(t), i.e. Q̄j(t) = P (Y1 ≥ j) =∑n

k=j qk(t), j = 1, 2, . . . , n.

(iii) The third set that we are interested in is A = (0, t), which corresponds to the inactivity time of the
system. The conditional probability pi(A), which we denote by ri(t), is

ri(t) = P (T = Xi:n|T < t)

=
siFi:n(t)∑n

j=1 sjFj:n(t)
, i = 1, 2, ..., n, (7)

where

Fi:n(t) =

n∑
k=i

(
n

k

)
F k(t)F̄n−k(t).

We call the dynamic vector r(t) = (r1(t), r2(t), ..., rn(t)) the vector of inactivity signature of the
system. Note that ri(t) can be represented in terms of ϕ(t) as

ri(t) =
si
∑n

m=i

(
n
m

)
ϕm(t)∑n

j=1 sj
∑n

m=j

(
n
m

)
ϕm(t)

, i = 1, 2, . . . , n.

In what follows, we assume that Y2 is a discrete random variable with probability mass function ri(t),
and denote the corresponding survival function by R̄j(t), i.e. R̄j(t) =

∑n
k=j rk(t), j = 1, 2, . . . , n.

Note that the signature s does not depend on the underlying distribution function F . However, it is
clear that the dynamic vectors p(t),q(t), and r(t) depend on the distribution function F .

In the next theorem, we assume that the signature of the system takes the form

s = (0, . . . , 0, si, si+1, . . . , sj−1, sj , 0, . . . , 0), i = 1, 2..., j, j = 1, 2, .., n, (8)

where sk > 0, k = i, ..., j.
Table I presents some coherent systems consisting of 4 components, their corresponding signature

which is of the form (4), and their corresponding dynamic signature vector p(t). Some examples of the
residual, and inactivity signatures of the systems of order three are given in Navarro et al. [10], and
Goliforushani and Asadi [5], respectively.

Theorem 2.1. Let T be a coherent system signature vector of the form (4). Then

(a) for k = i, pk(t) is a non-increasing function of t;
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Table I
Coherent systems of order 4, and their corresponding signatures

T = ϕ(X1, ..., X4) s = (s1, s2, s3, s4) p(t) = ((p1(t), p2(t), p3(t), p4(t))

X1:4 = min(X1, X2, X3, X4) (1,0,0,0) (1,0,0,0)
X2:4 (2-out-of-4) (0,1,0,0) (0,1,0,0)

min(X1,max(X2,X3,X4)) ( 1
4
, 1
4
, 1
2
, 0) ( 2

2+3ϕ(t)+6ϕ2(t)
, 3ϕ(t)

2+3ϕ(t)+6ϕ2(t)
, 6ϕ2(t)

2+3ϕ(t)+6ϕ2(t)
, 0)

max(min(X1, X2),min(X3, X4)) (0, 2
3
, 1
3
, 0) (0, 2

2+ϕ(t)
, ϕ(t)
2+ϕ(t)

, 0)

min(max(X1, X2),max(X3, X4)) (0, 1
3
, 2
3
, 0) (0, 1

1+2ϕ(t)
, 2ϕ(t)
1+2ϕ(t)

, 0)

max(X1,min(X2,X3,X4)) ( 1
2
, 1
4
, 1
4
, 0) ( 4

4+3ϕ(t)+3ϕ2(t)
, 3ϕ(t)

4+3ϕ(t)+3ϕ2(t)
, 3ϕ2(t)

4+3ϕ(t)+3ϕ2(t)
, 0)

X3:4 (3-out-of-4) (0,1,0,0) (0,1,0,0)
X4:4 = max(X1, X2, X3, X4) (0,0,0,1) (0,0,0,1)

(b) for k = j, pk(t) is a non-decreasing function of t; and

(c) for i ≤ k ≤ j,

lim
t→0

pk(t) =

{
1 k = i
0 k ̸= i,

and

lim
t→∞

pk(t) =

{
1 k = j
0 k ̸= j.

Proof: Under the assumptions of the theorem, pk(t) can be written as

pk(t) =
ck,nskϕ

k−1(t)∑j
l=i cl,nslϕ

l−1(t)
,

=
ck,nsk∑j

l=i cl,nslϕ
l−k(t)

, k = i, ..., j. (9)

Based on the fact that ϕ(t) is non-decreasing in t, see that, for k = i, pi(t) is a decreasing function of
t; and for k = j, pj(t) is a non-decreasing function of t. This proves parts (a) and (b). To prove part
(c), note that, if t → 0, then ϕ(t) → 0, and hence from (9) we get for k = i, limt→0 pk(t) = 1, and zero
otherwise. Using the same argument, if t → ∞, then ϕ(t) → ∞, and hence we obtain limt→∞ pk(t) = 1
for k = j, and zero otherwise. □

For a coherent system with signature vector of the form (4), under the condition that the system fails
at time t, part (a) of the theorem shows that, when t gets larger, the probability that the ith ordered
lifetime causes failure of the system gets smaller. Part (b) of the theorem indicates that, under the
condition that the system fails at time t, when t gets larger, then the probability that the jth ordered
lifetime causes the failure of the system gets larger. The first limit in part (c) of the theorem shows
that, if the system fails at an early time of its operation, then it is more probable that its failure cause is
based upon the component with lifetime Xi:n. The second limit shows, in long time operation, it is more
probable that the system failure cause be the component with lifetime Xj:n.

One can verify that the analogous results are valid for qi(t), and ri(t) (see also, Navarro et al. [10]).
We have summarized the results in Table II.

Theorem 2.2. Let the signature of the system be s = (s1, s2, ..., sn). Then the distribution function F (t)
can be recovered from pi(t) as

F̄ (t) =
(n− i)si+1pi(t)

isipi+1(t) + (n− i)si+1pi(t)
, t > 0 i = 1, ..., n.

Proof: It is easily seen that, when the ratio is defined, we have

pi+1(t)

pi(t)
=

(n− i)

i

si+1

si
ϕ(t), i = 1, 2, ..., n− 1.
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Table II
The time behavior of dynamic signatures, based on signature (4)

pi(t) is non− increasing in t pj(t) is non− decreasing in t
limt→0 pk(t)=1 k = i limt→∞ pk(t)=1 k = j

=0 k ̸= i =0 k ̸= j
qi(t) is non− increasing in t qj(t) is non− decreasing in t
limt→0 qk(t) = si k = i limt→∞ qk(t)=1 k = j

=0 k ̸= i =0 k ̸= j
ri(t) is non− increasing in t rj(t) is non− decreasing in t
limt→0 rk(t) = 1 k = i limt→∞ rk(t) = sj k = j

=0 k ̸= i =0 k ̸= j

Because ϕ(t) = F (t)/F̄ (t), after some simplification, we get the result. □
From the proof of the theorem, it can be also concluded that the ratio pi+1(t)/pi(t) is a non-decreasing

function of time.
The concept of weighted distributions is important in a wide range of statistical applications. A

density function g is said to be a weighted density function corresponding to density function f with
weight w > 0 if

g(x) =
w(x)f(x)

E(w(X))
, x ∈ R,

where E(w(X)) < ∞. The following theorem shows that pi(t) is a weighted distribution corresponding
to qi(t) (ri(t)). Before giving the theorem, we recall that the hazard rate (reversed hazard rate) of a
continuous random variable X with density f(t), distribution F , and survival function F̄ (t), which we
denote by λ(t) (h(t)), is defined as λ(t) = f(t)/F̄ (t) (h(t) = f(t)/F (t)).

Theorem 2.3.

(a) Let λi:n(t) denote the hazard rate of Xi:n. For i = 1, 2, . . . , n, we have

pi(t) =
λi:n(t)

E (λY1:n(t))
qi(t), t > 0,

where the expectation is taken over the discrete random variable Y1 with probability function qi(t).

(b) Let hi:n(t) denote the reversed hazard rate of Xi:n. For i = 1, 2, . . . , n, we have

pi(t) =
hi:n(t)

E (hY2:n(t))
ri(t), t > 0,

where the expectation is taken over the discrete random variable Y2 with probability function ri(t).

Proof: We only prove part (a), as (b) can be proven similarly. Using (3), and (6), we have

pi(t)

qi(t)
=

fi:n(t)

F̄i:n(t)

∑n
j=1 sjF̄j:n(t)∑n
j=1 sjfj:n(t)

=
λi:n(t)

λT (t)

where λT (t) denotes the hazard rate of the system. But we have

λT (t) =

∑n
j=1 sjfj:n(t)∑n
j=1 sjF̄j:n(t)

=

∑n
j=1 sjλi:n(t)F̄j:n(t)∑n

j=1 sjF̄j:n(t)

= E (λY1:n(t)) .



Mahmoudi, M. and Asadi, M. 7

□
The following lemma enables us to prove the main results of this paper.

Lemma 2.4. The functions η1j(t), η2j(t), and ηj(t), j = 1, 2, . . . , n, defined as follows, respectively, are
non-decreasing functions of t, t > 0.

(a) η1j(t) =
∑n

k=j sk
∑k−1

m=0 (
n
m)t

m∑n
i=1 si

∑i−1
m=0 (

n
m)tm

,

(b) η2j(t) =
∑n

k=j sk
∑n

m=k (
n
m)t

m∑n
i=1 si

∑n
m=i (

n
m)tm

, and

(c) ηj(t) =
∑n

k=j skck,nt
k∑n

i=1 sici,nti
.

Proof: We first prove (a). Navarro et al. [10], showed that, for all j = 1, 2, . . . , n, the survival
function Q̄j(t) =

∑n
k=j qk(t), is a non-decreasing function of t. In particular, if we assume that ϕ(t) = t,

i.e. F (t) = t/t+1, t > 0, then η1j(t) = Q̄j(t) is a non-decreasing function of t. This completes the proof
of part (a).

(b) Using the same steps as used in Lemma 2.1 of Navarro et al. [10] to show that Q̄j(t) is non-
decreasing in t, and based on the fact that the ratio Fi:n(t) Fi+1:n(t) is a non-increasing function of t,
we can show that, for all j = 1, 2, ..., n, R̄j(t) =

∑n
k=j rk(t) is a non-decreasing function of t. Thus, by

taking ϕ(t) = t, we can easily see that η2j(t) is a non-decreasing function of t. Part (c) can be considered
as a special case of either part (a) or part (b). Hence, the proof of the lemma is complete. □

Now we can prove the following interesting result.

Theorem 2.5. Consider two coherent systems of order n with the same structures. Assume that the
components of the systems have independent lifetimes, with survival functions F̄ , and Ḡ, respectively. If
for all t, F̄ (t) ≤ Ḡ(t), then

(a) Q̄F
j (t) ≥ Q̄G

j (t), where Q̄
F
j (t) =

∑n
k=j q

F
k (t), j = 1, 2, . . . , n, and Q̄G

j (t) is defined similarly;

(b) R̄F
j (t) ≥ R̄G

j (t), where R̄
F
j (t) =

∑n
k=j r

F
k (t), j = 1, 2, . . . , n, and R̄G

j (t) is defined similarly; and

(c) P̄F
j (t) ≥ P̄G

j (t), where P̄F
j (t) =

∑n
k=j p

F
k (t), j = 1, 2, . . . , n, and P̄G

j (t) is defined similarly.

Proof: We prove part (a). Parts (b) and (c) can be proven similarly. The assumption that F̄ (t) ≤ Ḡ(t)
implies that ϕF (t) ≥ ϕG(t), t > 0. Hence, from part (a) of Lemma 2.4, we have

η1j(ϕF (t)) ≥ η1j(ϕG(t)),

which is equivalent to saying that, for all j = 1, 2, ..., n, and all t, Q̄F
j (t) ≥ Q̄G

j (t). This completes the
proof of the theorem. □ A simple, interesting conclusion of the theorem is as follows. Assume that the
signature of the system is given as (4). From Theorem 2.5, it can be concluded that, when F̄ (t) ≤ Ḡ(t),
then

P (T = Xj:n|T ∈ A) ≥ P (T = Yj:n|T ∈ A)

when Xj:n, and Yj:n are the lifetimes of the jth ordered lifetime in the systems based on F , and G
respectively; and A is the set A = {t}, A = (t,∞) or A = (0, t). That is, under these circumstances,
in the system that has less reliable components, it is more probable that the component with the jth
ordered lifetime causes the failure of the system. Denote by E(t), E1(t), and E2(t) the expectations
of Y , Y1, and Y2, respectively. Then we can prove the following representation theorem.

Theorem 2.6. The survival function of T , F̄T (t), can be represented as

F̄T (t) = exp{−
∫ t

0

d
dxE1(x)

E1(x)− E(x)
dx}, t > 0. (10)



8 2th Workshop on Reliability and its Applications

Proof: Under the assumption that qi(t), i = 1, 2, ..., n, is differentiable in terms of t, we have, for
i = 1, 2, . . . , n,

d

dx
qi(x) =

−sifi:n(x)
∑n

j=1 sjF̄j:n(x) + siF̄i:n(x)
∑n

j=1 sjfj:n(x)(∑n
i=1 sjF̄j:n(x)

)2
= rT (t) (qi(t)− pi(t)) , (11)

where rT (t) =
∑n

i=1 sifi:n(t)∑n
i=1 siF̄i:n(t)

denotes the hazard rate of the system. On the other hand, we have

d

dx
E1(x) =

n∑
i=1

xi:n
d

dx
qi(x)

= rT (x)
n∑

i=1

xi:n (qi(t)− pi(t))

= rT (x) (E1(x)− E(x)) ,

where the second equality follows from (11). Using the fact that rT (t) =
fT (t)
F̄T (t)

, where fT (t) is the density

function of the system, we obtain (10). □ Using the same argument as used to prove Theorem 2.6, it
can be shown that the distribution function of T , FT (t), can be recovered from E(t), and E2(t).
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Abstract

Let T1, T2, . . . , Tn be exchangeable random variables and have an absolutely continuous joint
distribution and suppose Ti:n represents the ith order statistic among Ti’s, i = 1, 2, . . . , n. In this
paper some expressions for the joint distribution of (T1:n, . . . , Tn:n), marginal distribution of Ti:n

and the joint distribution of (Tr:n, Tk:n), 1 ≤ r ≤ k ≤ n in terms of the joint distribution (or joint
survival) function of Ti’s are provided, which are more general than those of the case when Ti’s are
independent and identically distributed (i.i.d.) random variables. Using these and when {T1, . . . , Tn}
is a sequence of lifetimes, some expressions for the mean residual life functions of a n−k+1-out-of-n
system, Hk

n(t) = E(Tk:n − t|T1:n > t) and Mr,k
n (t) = E(Tk:n − t|Tr:n > t), 1≤ r ≤ k ≤ n in terms of

the joint survival function of Ti’s are given. Also some examples are provided.
Keywords and Phrases: Order statistics; Exchangeable random variables; (n− k+1)-out-of-n

system; Mean residual life function.
AMS Subject Classification 2000: primary 62E10; secondary 60E05.

1 Introduction

In reliability analysis, the assumption of dependence among lifetimes of components of the system is more
realistic than assumption of independence. For example the components of the system may be affected
by a common shock, see e.g. Barlow and Proschan (1975). A kind of dependence is exchangeability which
attracted the interest of many authors in recent years. See for example Navarro et al. (2005), Navarro
et al. (2007) and Zhang (2010).

The random variables T1, T2, . . . , Tn are exchangeable if

P (T1 ≤ t1, . . . , Tn ≤ tn) = P (Tπ(1) ≤ t1, . . . , Tπ(n) ≤ tn)

where π = (π(1), . . . , π(n)) is an arbitrary permutation of {1, . . . , n}, i.e. the joint distribution of
T1, . . . , Tn is symmetric in t1, . . . , tn. Note that Ti’s are identically distributed. We assume that all
random variables here are absolutely continuous. It is well known that when T1, . . . , Tn are independent
and have a common distribution function F , survival function F̄ = 1 − F and density function f = F ′

then

f(T1:n,...,Tn:n)(t1, . . . , tn) = n!f(T1,...,Tn)(t1, . . . , tn) = n!

n∏
i=1

f(ti),

F̄Ti:n(t) = P (Ti:n > t) =
i−1∑
j=0

(
n

j

)
F j(t)F̄n−j(t),

fTi:n(t) =
n!

(i− 1)!(n− i)!
F i−1(t)F̄n−i(t)f(t)

and

P (Tr:n > t, Tk:n > s) =
r−1∑
i=0

(
n

i

)
F i(t)

k−i−1∑
j=0

(
n− i

j

)
[F̄ (t)− F̄ (s)]jF̄n−i−j(s)

for s > t and 1 ≤ r ≤ k ≤ n, see for example David and Nagaraja (2003). In Section 2 some expressions for
the right sides of the above formulas are given when T1, . . . , Tn are exchangeable random variables. Finally
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in Section 3, some explicit formulas for the mean residual life (MRL) functions Hk
n(t) = E(Tk:n− t|T1:n >

t) and Mr,k
n (T ) = E(Tk:n − t|Tr:n > t) of a n− k + 1-out-of-n system with exchangeable components in

terms of the joint survival function of Ti’s, F̄(t1, . . . , tn) = P (T1 > t1, . . . , Tn > tn) are provided.

2 Main Results

Let (T1, T2, . . . , Tn) be an exchangeable random vector, that is P (T1 ≤ t1, . . . , Tn ≤ tn) = P (Tπ(1) ≤
t1, . . . , Tπ(n) ≤ tn), for any permutation π = (π(1), . . . , π(n)) of {1, . . . , n} and suppose T1:n, . . . , Tn:n
are corresponding order statistics. We note that the joint density function f(T1,...,Tn)(t1, . . . , tn) is also
symmetric in t1, . . . , tn. Therefore we can write

f(T1:n,...,Tn:n)(x1, . . . , xn) = n!f(T1,...,Tn)(x1, . . . , xn), x1 < x2 < · · · < xn. (1)

We now consider the survival function of Ti:n. Since Ti’s are exchangeable random variables we can
write

F̄Ti:n(t) = P (Ti:n > t) =
i−1∑
j=0

(
n

j

)
P (T1 ≤ t, . . . , Tj ≤ t, Tj+1 > t, . . . , Tn > t).

The above equation can be written in terms of the joint survival function of Ti’s which is given as
follow.

Lemma 1. We have

F̄Ti:n(t) =
n∑

j=n−i+1

(−1)j−n+i−1

(
j − 1

n− i

)(
n

j

)
P (T1:j > t)

=
n∑

j=n−i+1

(−1)j−n+i−1

(
j − 1

n− i

)(
n

j

)
F̄(t, . . . , t︸ ︷︷ ︸

j

,−∞, . . . ,−∞︸ ︷︷ ︸
n−j

)

= 1−
n∑

j=i

(−1)j−i

(
j − 1

i− 1

)(
n

j

)
F(t, . . . , t︸ ︷︷ ︸

j

,∞, . . . ,∞︸ ︷︷ ︸
n−j

) = 1− FTi:n(t). (2)

Proof. Using Equation (3.4.2) in David and Nagaraja (2003, Page 46) for i.i.d. random variables
which exactly holds true for exchangeable random variables the proof follows.

Equation (2) shows that the survival (or distribution) function of Ti:n can be written as a linear
combination of the joint (or survival) function of T1, . . . , Tn. By taking derivative from both sides of the
Equation (2) with respect to t, density function of Ti:n can be simply obtained.

We now consider the bivariate distribution of (Tr:n, Tk:n), 1 ≤ r < k ≤ n. For r = 1 and s > t we
have

P (T1:n > t, Tk:n > s) =

k−1∑
j=0

(
n

j

)
P (t < T1 ≤ s, . . . , t < Tj ≤ s, Tj+1 > s, . . . , Tn > s).

Lemma 2. For s > t and 1 ≤ k ≤ n we have F̄(T1:n,Tk:n)(t, s) = P (T1:n > t, Tk:n > s)

=
k−1∑
j=0

(−1)k−j−1

(
n

j

)(
n− j − 1

n− k

)
P (T1 > t, . . . , Tj > t, Tj+1 > s, . . . , Tn > s)

=

k−1∑
j=0

(−1)k−j−1

(
n

j

)(
n− j − 1

n− k

)
F̄(t, . . . , t︸ ︷︷ ︸

j

, s, . . . , s︸ ︷︷ ︸
n−j

)

=

n∑
j=n−k+1

(−1)j−n+k−1

(
n

j

)(
j − 1

n− k

)
F̄(t, . . . , t︸ ︷︷ ︸

n−j

, s, . . . , s︸ ︷︷ ︸
j

) (3)
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Proof. The proof follows from Equation (3.4.3) in David and Nagaraja (2003, Page 46). Equation (3)
shows that the joint reliability of (T1:n, Tk:n) can be written as a linear combination of the joint survival
function of Ti’s, F̄(x1, . . . , xn) = P (T1 > x1, . . . , Tn > xn).

Note that by using the joint and marginal reliability functions, the joint distribution function of
(T1:n, Tk:n) can be simply obtained as follow:

F(T1:n,Tk:n)(t, s) = P (T1:n ≤ t, Tk:n ≤ s) = 1− F̄T1:n(t)− F̄Tk:n
(s) + F̄(T1:n,Tk:n)(t, s).

We now consider the joint reliability function of (Tr:n, Tk:n) when 1 < r < k ≤ n. By using the
corresponding properties for order statistics and exchangeability assumption of Ti’s we can write

P (Tr:n > t, Tk:n > s) =
r−1∑
i=0

(
n

i

) k−i−1∑
j=0

(
n− i

j

)
×

P (T1 ≤ t, . . . , Ti ≤ t, t < Ti+1 ≤ s, . . . , t < Ti+j ≤ s, Ti+j+1 > s, . . . , Tn > s). (4)

Lemma 3. We have

P (T1 ≤ t, . . . , Ti ≤ t, t < Ti+1 ≤ s, . . . , t < Ti+j ≤ s, Ti+j+1 > s, . . . , Tn > s)

= F̄(−∞, . . . ,−∞︸ ︷︷ ︸
i

, t, . . . , t︸ ︷︷ ︸
j

, s, . . . , s︸ ︷︷ ︸
n−i−j

)−
j∑

l=1

(−1)l+1

(
j

l

)
F̄(−∞, . . . ,−∞︸ ︷︷ ︸

i

, t, . . . , t︸ ︷︷ ︸
j−l

, s, . . . , s︸ ︷︷ ︸
n−i−j+l

)

−
i∑

l=1

(−1)l+1

(
i

l

)
F̄(−∞, . . . ,−∞︸ ︷︷ ︸

i−l

, t, . . . , t︸ ︷︷ ︸
l+j

, s, . . . , s︸ ︷︷ ︸
n−i−j

)

+

i∑
l1=1

j∑
l2=1

(−1)l1+l2

(
i

l1

)(
j

l2

)
F̄(−∞, . . . ,−∞︸ ︷︷ ︸

i−l1

, t, . . . , t︸ ︷︷ ︸
j+l1−l2

, s, . . . , s︸ ︷︷ ︸
n−i−j+l2

). (5)

We assume that
∑N

l=1 al = 0 when N = 0.
Proof. We can write

P (T1 ≤ t, . . . , Ti ≤ t, t < Ti+1 ≤ s, . . . , t < Ti+j ≤ s, Ti+j+1 > s, . . . , Tn > s) = P (A ∩B′ ∩ C ′)

where the events A, B and C are defined as follows

A = (Ti+1 > t, . . . , Ti+j > t, Ti+j+1 > s, . . . , Tn > s), B = ∪i+j
l=i+1(Tl > s), C = ∪i

l=1(Tl > t).

Using the principle of inclusion-exclusion and noting that P (A ∩ B′ ∩ C ′) = P (A)− P (A ∩ B)− P (A ∩
C) + P (A ∩B ∩ C) the result follows.

If we replace Equation (5) in Equation (4), we can write the joint reliability function of (Tr:n, Tk:n),
again as a linear combination of the joint survival function of Ti’s.

3 Function of a n − k + 1-out-of-n System with Exchangeable
Components

The mean residual life (MRL) and the failure rate functions are very important in Reliability analysis.
In this section we assume that the exchangeable and nonnegative random variables T1, . . . , Tn represent
the lifetimes of n components which are connected in a n− k + 1-out-of-n system. It is well known that
the lifetime of this system is Tk:n. From the results given in the previous section, we shall obtain the
MRL function of the system. Particularly we consider two MRL functions

Hk
n(t) = E(Tk:n − t|T1:n > t) and Mr,k

n (t) = E(Tk:n − t|Tr:n > t), 1 ≤ r ≤ k ≤ n,
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in which Hk
n(t) measures MRL of the system when all components of the system are working at or before

time t whereas in Mr,k
n (t) the number of those components is at least n− r + 1.

The following lemma gives an expression for Hk
n(t).

Lemma 4. We have

Hk
n(t) = E(Tk:n − t|T1:n > t) =

n∑
j=n−k+1

(−1)j−n+k−1

(
n

j

)(
j − 1

n− k

)
H1

j,n(t) (6)

where

H1
j,n(t) = E(T1:j − t|T1:n > t) =

∫ ∞

0

F̄(

j︷ ︸︸ ︷
t+ x, . . . , t+ x,

n−j︷ ︸︸ ︷
t, . . . , t)

F̄(t, . . . , t)
dx.

Proof. We know that

Hk
n(t) = E(Tk:n − t|T1:n > t) =

∫ ∞

0

P (Tk:n − t > x|T1:n > t)dx =

∫ ∞

0

P (Tk:n > t+ x, T1:n > t)

F̄(t, . . . , t)
dx.

Now from Equation (3) the proof follows.
Equation (6) gives an expression for Hk

n(t) = E(Tk:n − t|T1:n > t) in terms of the joint survival
function of Ti’s, F̄(x1, . . . , xn).

Remark. We note that from Lemma 1 and in view of Lemma 3, the MRL function

Mr,k
n (t) = E(Tk:n − t|T1:n > t) =

∫ ∞

0

P (Tk:n > t+ x, Tr:n > t)

P (Tr:n > t)
dx

can also be written in terms of the joint survival function of Ti’s but the expression becomes lengthy.
We now give two examples for determining Hk

n(t).
Example 1. Suppose that the joint distribution of T1, . . . , Tn is Marshal and Olkin’s multivariate

exponential with the following survival function

F̄(x1, . . . , xn) = exp{−
n∑

i=1

λixi −
∑
i1<i2

λi1,i2max(xi1 , xi2)− · · · − λ12...nmax(x1, . . . , xn)}.

For the special case λ1 = · · · = λn = λ12 = · · · = λ12...n = λ, F̄(x1, . . . , xn) is exchangeable. It can be
simply shown that

F̄(

j︷ ︸︸ ︷
t+ x, . . . , t+ x,

n−j︷ ︸︸ ︷
t, . . . , t)

F̄(t, . . . , t)
= exp{−(2n − 2n−j)λx}

and hence from Equation (6) we have

Hk
n(t) = λ−1

n∑
i=n−k+1

(−1)i+k−n−1

2n − 2n−i

(
n

i

)(
i− 1

n− k

)
= λ−1

k−1∑
i=0

(−1)k−i−1

2n − 2i

(
n

i

)(
n− i− 1

n− k

)
,

which is a positive constant. Another special case corresponds to λ1 = · · · = λn = λ > 0, and other λ’s
equal to 0 (i.e., the i.i.d. case). In this case we have

F̄(

j︷ ︸︸ ︷
t+ x, . . . , t+ x,

n−j︷ ︸︸ ︷
t, . . . , t)

F̄(t, . . . , t)
= exp(−λjx)

and therefore

Hk
n(t) = λ−1

n∑
i=n−k+1

(−1)i+k−n−1

i

(
n

i

)(
i− 1

n− k

)
= λ−1

k−1∑
i=0

(−1)k−i−1

n− i

(
n

i

)(
n− i− 1

n− k

)
,
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which is again a positive constant. In Example 1 we note that P (T1 = T2 = · · · = Tn) > 0, because Ti’s
are subjected to a common shock and therefore their joint distribution is not absolutely continuous. See
the following example.

Example 2. Assume that T1, . . . , Tn are distributed as Mardia’s multivariate Pareto distribution
with the following joint survival function

F̄(x1, . . . , xn) = (θ−1
n∑

i=1

xi − n+ 1)−a, xi > θ > 0, a > 1.

It can be simply shown that

E(T1:j − t|T1:n > t) =

∫ ∞

0

F̄(

j︷ ︸︸ ︷
t+ x, . . . , t+ x,

n−j︷ ︸︸ ︷
t, . . . , t)

F̄(t, . . . , t)
dx =

nt− nθ + θ

j(a− 1)

and hence from Equation (6), for t > θ we have

Hk
n(t) =

n∑
j=n−k+1

(−1)j+k−n−1

(
n

j

)(
j − 1

n− k

)
nt− nθ + θ

j(a− 1)
=

 n∑
j=n−k+1

cj(k, n)

 nt− nθ + θ

a− 1

where cj(k, n) = (−1)j+k−n−1
(
n
j

)(
j−1
n−k

)
/j. Note that

∑n
j=n−k+1 cj(k, n) = (a − 1)/θHk

n(θ) ≥ 0 and

therefore Hk
n(t) is a linearly increasing function of t.
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In this note, we consider a coherent system with the property that, upon failure of the system,
some of its components remain unfail in the system. Under this condition, we study the residual
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1 Introduction

Consider a technical system consisting of n components with structure function ϕ. The system is said to
be a coherent system if ϕ is monotone in every component (that is, the state of ϕ can not become worse
if any of its elements changes its state from down to up) and the system has no irrelevant component (a
component is said to be irrelevant if its performance does not affect the performance of the system). In
recent years, various aspects of reliability and aging characteristics of the lifetime and the residual lifetime
of coherent systems and its components have been studied by different researchers. The concept of the
signature of the system has shown to be very useful tool in investigating the reliability specifications of the
system. Suppose that a coherent system with n components has independent and identically distributed
(i.i.d.) lifetimes X1, X2, ..., Xn, where Xi’s are distributed according to a common continuous distribution
F . Let T = T (X1, ..., Xn) denote the lifetime of the system. Then, the signature of a coherent system is
defined to be a probability vector s = (s1, s2, ..., sn) in which

si = P{T = Xi:n}, i = 1, 2, ..., n, (1)

where Xi:n represents the ith ordered components lifetime. It can be shown that si =
ni

n! , where ni is the
number of ways that distinct X1, X2, . . . , Xn can be ordered such that T (x1, ..., xn) = xi:n, i = 1, ..., n,
where xi:n is the value of Xi:n (see, Samaniego [3]). The probability si is, in fact, the probability that
the component with lifetime Xi:n causes the failure of the system. Based on the fact that the signature
vector s does not depend on the common distribution function of Xi’s, the survival function of T , can be
written as a mixture of the survival functions of Xi:n, i = 1, 2, ..., n, with weights s1, s2, ..., sn. That is,
if F̄T (t) denotes the survival function of the system lifetime and F̄i:n(t) denotes the survival function of
Xi:n, then

F̄T (t) =
n∑

i=1

siF̄i:n(t). (2)

Representation (2) is a useful identity to study the stochastic properties of a coherent system based on
the properties of its signatures as well as the properties of ordered lifetime of its components. Kochar et
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al. [?] showed that when the vector of signatures of two coherent systems are stochastically ordered then
the lifetimes of the systems are also stochastically ordered.

In a recent paper, Biramov and Arnold [1], considered an (n− k+1)-out-of-n system and studied the
properties of the residual life lengths of the remaining functioning components of the system. Since the
signature vector of (n− k + 1)-out-of-n systems is of the form

s = ( 0, 0..., 0,︸ ︷︷ ︸
k−1 times

1, 0, 0..., 0︸ ︷︷ ︸
n−k times

)

the system has the property that, upon its failure, n− k of its components will remain unfail and hence,
after they rescue from the failed system, they can be possibly used in other systems. If this is so, then an
interesting problem would be the study on the reliability properties of those live components. Suppose
that X1, ..., Xn represent the lifetime of the components of a (n− k + 1)-out-of-n system which are i.i.d.

with common continuous distribution function F and density function f . Denote by X
(k)
1 , ..., X

(k)
n−k,

the residual lifetime of the components after the k failures in the system. Bairamov and Arnold have

investigated several distributional properties of X
(k)
j ’s j = 1, ..., n− k. Among other results, they showed

that the joint survival function of X
(k)
j ’s is given as

F̄ (k)
n (x1, ..., xn−k) =

∫ ∞

0


n−k∏
j=1

F̄ (t+ xj)

F̄ (t)

 dFk:n(t), (3)

where Fk:n denotes the distribution of the kth order statistics Xk:n. In this paper, we extend the work
of Bairamov and Arnold to the case where the system is a coherent system. More precisely, we consider
a coherent system for which the signature vector is of the form s = (s1, ..., si, 0, ..., 0) where sj > 0,
j = 1, ..., i. It is clear that, a coherent system with this vector of signature has an (n − k + 1)-out-of-n
system as a special case. Since sj = 0 for j = i + 1, ..., n, then after system failure, at least n − i
components remain alive and hence they possibly can be separated from the system and used in the
other systems. The aim of the present paper is to investigate distributional properties of the residual
lifetime of unfail components of the system.

2 Main Results

Consider a coherent system with a signature vector of the form

s = (s1, ..., si, 0, ..., 0) (4)

where sj > 0, j = 1, ..., i. Suppose that X1, X2, ..., Xn denote the components lifetime of the system

where Xi’s are assumed to be i.i.d. with a common absolutely continuous distribution function F and
density function f . If X1:n, X2:n, ..., Xn:n represent the ordered lifetimes of the components, then in a
system with signature vector (4), the components with lifetime Xi+1:n, ..., Xn:n would never cause the
failure of the system. Hence, after the failure of the system these components remain unfail. Denote by

Y
(i)
j , j = 1, ..., n− i, the randomly ordered values of Xj:n, j = i+ 1, ..., n. Then, the residual lifetime of

the live components after the failure of the system can be denoted by

X∗
j = Y

(i)
j − T, j = 1, ...., n− i,

where T represents the lifetime of the system. The joint survival function of the X∗
j ’s can be expressed

as

F̄ ∗(x1, ..., xn−i) =

∫ ∞

0


n−i∏
j=1

F̄ (t+ xj)

F̄ (t)

 fT (t)dt, (5)

where F̄ (t) = 1− F (t) and fT (t) denotes the density function of T . It is seen from (5) that when T
is given, X∗

j ’s are independent, i.e. they are exchangeable.
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Also from (3) and (5), F̄ ∗(x1, ..., xn−i) can be represented as a mixture distribution of the survival
probabilities of unfailed components in (n− k + 1)-out-of-n systems, as follows

F̄ ∗(x1, ..., xn−i) =
i∑

k=1

sk

∫ ∞

0


n−i∏
j=1

F̄ (t+ xj)

F̄ (t)

 dFk:n(t)

=

i∑
k=1

skF̄
(k)
n (x1, ..., xn−k).

The common marginal survival function and marginal density functions of X∗
j ’s are, respectively, given

as

F̄ ∗(x) =

∫ ∞

0

F̄ (t+ x)

F̄ (t)
fT (t)dt (6)

and

f∗(x) =

∫ ∞

0

f(t+ x)

F̄ (t)
fT (t)dt. (7)

Note that (6) can be rewritten as

F̄ ∗(x) =
i∑

k=1

sk

∫ ∞

0

F̄ (t+ x)

F̄ (t)
dFk:n(t)

=

i∑
k=1

sk.F̄
(k)
n (x), (8)

where, F̄
(k)
n (x) is obtained from (3). That is, the survival function F̄ ∗(x) can be represented as a mixture

of survival functions F̄
(k)
n (x).

If r∗(t) denotes the corresponding hazard rate of F̄ ∗, then it can be shown that

r∗(x) =
f∗(x)

F̄ ∗(x)
=

∫ ∞

0

r(x+ t)dGx(t)

where r(t) is the hazard rate of F̄ and

dGx(t) =

F̄ (t+x)
F̄ (t)

fT (t)dt∫∞
0

F̄ (u+x)
F̄ (u)

fT (u)du
.

A simple conclusion of this representation is that, if the components lifetime of the system are IFR (DFR)
1, then

r∗(x) =

∫ ∞

0

r(x+ t)dGx(t)

≥ (≤) r(x).

Similarly, if m∗(t) and m(t) denote the MRL 2 associated to F̄ ∗, and F̄ , respectively, then it is easily
seen that

m∗(x) =

∫ ∞

0

m(x+ t)dGx(t)

This, in turn, yields to the following fact that if F is DMRL (IMRL) 3, then for t > 0,

m∗(t) ≤ (≥)m(t).

1Increasing Failure Rate (Decreasing Failure Rate)
2Mean Residual Life
3Decreasing Mean Residual Life (Increasing Mean Residual Life)



18 2th Workshop on Reliability and its Applications

2.1 A link with mean residual life

The MRL of a lifetime random variable T with survival function F̄ , denoted by mF (t) is defined as

mF (t) = E(X − t|X > t) =

∫∞
t
F̄ (x)

F̄ (t)
dx

For the aforementioned system,

E(X∗
1 ) = E(mF (T )). (9)

A simple consequence of Theorem 2.1 is that, if F is NBUE (NWUE)4 with mean µ, then

E(X∗
1 ) ≤ (≥)µ.

Example Consider a series-parallel system with three components with lifetime

T = min(X1,max(X2, X3)),

where Xi is the lifetime of ith component. The signature vector of such system is equal to s = ( 13 ,
2
3 , 0).

Therefore, (8) is written as

F̄ ∗(x) =
1

3

∫ ∞

0

F̄ (t+ x)

F̄ (t)
dF1:3(t) +

2

3

∫ ∞

0

F̄ (t+ x)

F̄ (t)
dF2:3(t),

Now, assume that X has a GPD distribution with survival function

F̄ (x) =

(
b

ax+ b

) 1
a+1

, x > 0, a > −1, b > 0.

The GPD is a family of distributions which includes, the exponential distribution (when a → 0), the
Pareto distribution (for a > 0) and the Power distribution (for −1 < a < 0). For such distribution it is
easily seen that mF (x) = ax+ b. Hence from (9), we have

E(X∗
1 ) = E(aT + b) = aE(T ) + b,

where T is the lifetime of the system. To compute the expectation of T , one can easily show that the
survival function of the system is given as follows.

F̄T (t) = F̄ (t)[1− F 2(t)] = F̄ 2(t)[2− F̄ (t)], t > 0.

Hence

E(T ) =

∞∫
0

F̄T (t)dt =
b(3a+ 4)

(3 + 2a)(2 + a)
.

Therefore

E(X∗
1 ) =

b(5a2 + 11a+ 6)

(3 + 2a)(2 + a)
.

Note that, for GPD, E(X) = b. Hence we have

E(X∗
1 )

 > E(X) for Pareto distribution
= E(X) for exponential distribution
< E(X) for power distribution.

4New Better than Used in Expectation (New Worse than Used in Expectation)
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2.2 Characterization of exponential distribution

Assuming that the component lifetime distribution F was an exponential distribution, the residual life-
times following the system failure will be independent and will have the same marginal distribution as

that of the original lifetimes. X∗
1

d
= X1 if and only if X1 ∼ Exponential(λ) for some λ > 0. Suppose

that X∗
1 and X∗

2 are independent and
(i) F̄ is strictly decreasing in (0,∞),

(ii) for each x > 0, F̄ (x+t)
F̄ (t)

is a monotone function of t,

then X1 ∼ exponential(λ) for some λ > 0.

3 Some stochastic properties of unfailed components

In this section, we explore some stochastic and aging properties of unfailed components in the system.

(a) If F is NBU(NWU)5, then X∗ ≤
st
X (X∗ ≥

st
X).

(b) If F is IFR (DFR), then X∗ ≤
hr
X (X∗ ≥

hr
X).

(c) If f is log-concave (log-convex), then X∗ ≤
lr
X (X∗ ≥

lr
X).

Let s1 and s2 be the signature vectors of two coherent systems with i.i.d. lifetimes distributed with the
common continuous distribution function F . Denote by T1 and T2 the respective lifetimes of the systems.
Let also X∗

1 and X∗
2 be the residual lifetimes of the unfailed components in two systems, respectively.

(a) If F is DFR and s1 ≤st s2, then X
∗
1 ≤st X

∗
2 .

(b) If F is DFR and s1 ≤hr s2, then X
∗
1 ≤hr X

∗
2 .

(c) If f is log-convex and s1 ≤lr s2, then X
∗
1 ≤lr X

∗
2 .
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1 Introduction

The analysis of lifetime data is an area of statistics primarily concerned with making inference about life
characteristics based on data from the occurrence of certain events. Often, they involve the occurrence of
an undesirable event such as the failure of a component in a machine, breakage of a beam in a structure,
and death of a patient. The large body of theory that has been developed for analyzing data of this
kind is called reliability analysis (in the physical sciences and engineering) or survival analysis (in the
biomedical sciences). In analyzing lifetime data, a problem that is often encountered is the comparison
of reliability of two products. For example, a manufacturer of a product will naturally be interested
in assessing the reliability of the product. It is common that the reliability of the product is evaluated
by some characteristics of lifetimes such as mean, median, quantile, survival function and hazard rate
function. Sometimes it is possible that the data are incomplete in the sense that some units had not
failed by the time observation on them stopped. For such units, even though we do not know the exact
value of the failure time T, we do have partial information about it. Since censoring is so commonly
prevalent in lifetime data, statistical methods that have been developed for analyzing lifetime data do
accommodate censoring in the model as well as in the subsequent analysis. In our discussion, we will
focus primarily onType-II right censoring as it is the most common form of censoring encountered in many
practical problems. In reliability context, the most important inferential problems are comparisons of
either reliability functions or hazard rate functions of two populations under various censorships, including
Type-II censoring. Let X and Y be lifetime of two independent units with density functions f and g,
distribution functions F and G, survival functions F = 1− F and G = 1−G and hazard rate functions
rF = f

F and rG respectively. In a particular life-testing experiment, suppose n1 units with independent
lifetimes X1, · · · , Xn1 from X and n2 units with independent lifetimes Y1, · · · , Yn2 from Y put on the
test. Then, the experiment is terminated when the first r failures of X’s are observed.
For the case of complete date, the problem of testing the hypotheses

H0 : rF (t) = rG(t)

against

H1 : rF (t) ≤ rG(t) with strict inequality over a set of nonzero probability and t ≥ 0, (1)
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was first discussed in the literature by Chikkagoudar and Shuster (1974). Subsequently, many related
developments have been made by Lee and Wolfe (1976), Kochar (1979, 1981), Joe and Proschan (1984)
and Cheng (1985). In particular, Kochar (1981) proposed a test statistic based on the fact that H1 is
equivalent to

η(s, t) =
F (s)

F (t)
− G(s)

G(t)
≥ 0 for s ≥ t ≥ 0.

Taking t = 0, H1 implies that F (s) ≥ G(s) for all s ≥ 0, which is well known as usual stochastic ordering
between X and Y . Kochar (1981) then defined the measure Γ(F,G) = E{η(X,Y )|X ≥ Y }
= 0.5 +

∫∞
0
F (x){0.5 + logG(x)}dG(x).ItshouldbenotedthatunderH0, Γ(F,G) = 0 while under H1,

Γ(F,G) > 0.
In Section 2, we modify the following test statistic due to Kochar (1981), given by

S =

∫ ∞

0

Fn1(x)

[
1

2
+ log

{
1− n2

n2 + 1
Gn2(x)

}]
dGn2(x) (2)

=
1

n2

n2∑
j=1

R(j) − j

n1

[
1

2
+ log

{
1− j

n2 + 1

}]
, (3)

where Fn1 is the empirical version of F , Gn2 is empirical version of G and R(j) is the rank of Y(j),
j = 1, . . . , n2, in the combined sample such that Y(j) is the jth order statistic of Y ’s. Note that H0 in (1)
rejected for large values of S. We establish and purpose three test statistics for the hypotheses testing
problem in (1).

2 Main Results

Let the sample from F be Type-II censored on the right with the first r complete failures observed and the
last n1− r failures times censored. For the purpose of constructing meaningful test statistics in this case,
we replace the distribution functions F and G in functional Γ(F,G) with their suitable empirical versions
Fn1 and Gn2 under censorship. We consider three different scenarios for the censored observations to be
distributed in the combined sample. In all these scenarios, we start with the assumption that I random
number of Y ′s occur before X(r). Let R(j) denote the rank of Y(j) in the combined increasing arrangement

of X ′s and Y ′s , R∗
(j) = R(j) − j , aj =

1
2 + log{1− j

n2+1} and event {I = i} ∈ {0, 1, · · · , n2}.
Case 1: We assume that all remaining (n1−r) X-failures occur immediately after X(r) and before Y(I+1).
In this case, we obtain the test statistic

S1(I) =
1

n2n1

I∑
j=1

R∗
(j)aj +

1

n2

n2∑
j=I+1

aj .

Case 2: We suppose that all remaining (n1 − r) X-failures occur at the end after Y(n2). In this case, we
obtain the test statistic

S2(I) =
1

n1n2

 I∑
j=1

R∗
(j)aj + r

n2∑
j=I+1

aj

 .
Case 3: Since S1(I) and S2(I) are two extreme scenarios in terms of placements of X-observations, we
propose the third test statistic by averaging S1(I) and S2(I), given by

SE(I) =
1

n2n1

I∑
j=1

R∗
(j)aj +

1

2n1n2
[n1 + r]

n2∑
j=I+1

aj .

It is evident that large values of S1(I), S2(I), and SE(I) lead to the rejection of H0 in favor of H1.
The following theorem is used to find the exact null distribution of proposed test statistics. Under
H0 : rF (t) = rG(t), for 1 ≤ r1 < · · · < ri ≤ i+ r − 1, Pr{I = i, R(1) = r1, R(2) = r2, . . . , R(i) = ri|H0} =
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n1 + n2 − r − i

n2 − i

)
(
n1 + n2
n2

) . The p-value for observed values s1, s2, sE of S1(I), S2(I) and SE(I) can be readily

computed. For example, we have

Pr (S1(I) ≥ s1|H0) =

(
n1 + n2 − r

n2

)
(
n1 + n2
n2

) I(−∞, 1
n2

∑n2
j=1 aj)

(s1)

+

n2∑
i=1

∑
(r1,··· ,ri),

1≤r1<···<ri≤i+r−1

(
n1 + n2 − r − i

n2 − i

)
(
n1 + n2
n2

) I(s1,∞)(s1(i))

where I(.) is an indicator function.
In an analogous manner, we have the following expressions for p-values of S2(I) and SE(I).

Pr(S2(I) ≥ s2|H0) =

(
n1 + n2 − r

n2

)
(
n1 + n2
n2

) I(−∞, r
n1n2

∑n2
j=1 aj)

(s2)

+

n2∑
i=1

∑
(r1,··· ,ri),

1≤r1<···<ri≤i+r−1

(
n1 + n2 − r − i

n2 − i

)
(
n1 + n2
n2

) I(s2,∞)(s2(i))

and

Pr(SE(I) ≥ sE |H0) =

(
n1 + n2 − r

n2

)
(
n1 + n2
n2

) I
(−∞,

(n1+r)
2n1n2

∑n2
j=1 aj)

(sE)

+

n2∑
i=1

∑
(r1,··· ,ri),

1≤r1<···<ri≤i+r−1

(
n1 + n2 − r − i

n2 − i

)
(
n1 + n2
n2

) I(sE ,∞)(sE(i))

Next, we examine its power properties, through a Monte Carlo simulation study in which based on an
extensive Monte Carlo simulation study, we evaluate the power of these new statistical tests and compare
them with test statistics which discussed extensively in Balakrishnan and Ng (2006) (Wmin, , Wmax and
WE). Note that these test statistics compare distribution functions of two populations. Where in, based
on 10000 replications of random samples from a particular distribution chosen from the alternative, we
determined the empirical power value of the test for some specific alternatives. The power results for the
tests S1(I), S2(I) and SE(I) and the tests Wmin, Wmax and WE for the exponential, Gamma, Weibull
and Makeham distributions for sample sizes 10 and 30 are presented in Tables 1 and 2, respectively. For
this purpose, we took the null and alternative cases for these models as follows:

(i) Exponential with E[X] = θ-H0 : X
d
= Y ∼ Exp(1) vs H1 : Y ∼ Exp(1), X ∼ Exp(θ), θ = 2, 4;

(ii) Gamma with E[X] = γθ and V ar(X) = γθ2 − H0 : X
d
= Y ∼ G(2, 1) vs H1 : Y ∼ G(2, 1), X ∼

G(2, θ), θ = 3, 6;

(iii) Weibull with hazard function r(x) = γ
θ (

x
θ )

γ−1 − H0 : X
d
=∼ W (4, 5) vs H1 : Y ∼ W (4, 5), X ∼
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W (4, θ), θ = 6, 8;
(iv) Makeham distribution with the survival function, Fθ(x) = exp [−{x+ θ(x+ e−x − 1)}] where θ is a

positive real number − H0 : X
d
= Y ∼ Exp(1) vs H1 : X ∼ Exp(1), Y ∼ M(θ), θ = 3, 9; Finally, on

the base of power values, we concluded that the test based on SE performs very well and is, therefore,
the one that is recommended for testing the hazard rate ordering between two distributions. This makes
the SE-test proposed here to be quite important and helpful for testing the hazard rate ordering of two
distributions.

Table1. Power values of S1(I), S2(I) and SE(I) and comparison with some precedence-type rank

statistics for the case when n1 = n2 = 10.
r Test Exp(2) Exp(4) G(2, 3) G(2, 6) W (4, 6) W (4, 8) M(3) M(9)

5 S1(I) 0.332 0.747 0.852 0.996 0.345 0.926 0.304 0.605
S2(I) 0.262 0.703 0.817 0.994 0.286 0.902 0.571 0.726
SE(I) 0.338 0.760 0.866 0.997 0.339 0.929 0.288 0.604
Wmin 0.275 0.674 0.853 0.994 0.281 0.878 0.043 0.172
Wmax 0.326 0.767 0.880 0.998 0.349 0.934 0.161 0.420
WE 0.325 0.760 0.886 0.997 0.351 0.929 0.086 0.270

6 S1(I) 0.341 0.794 0.882 0.998 0.384 0.950 0.535 0.805
S2(I) 0.342 0.792 0.881 0.998 0.363 0.944 0.704 0.797
SE(I) 0.357 0.798 0.885 0.998 0.388 0.954 0.719 0.803
Wmin 0.327 0.749 0.872 0.996 0.348 0.914 0.054 0.202
Wmax 0.339 0.795 0.896 0.998 0.376 0.947 0.139 0.378
WE 0.329 0.766 0.886 0.998 0.352 0.937 0.087 0.268

7 S1(I) 0.345 0.814 0.889 0.998 0.375 0.961 0.750 0.931
S2(I) 0.355 0.819 0.901 0.999 0.386 0.959 0.613 0.855
SE(I) 0.362 0.830 0.903 0.999 0.387 0.964 0.746 0.922
Wmin 0.322 0.761 0.882 0.997 0.361 0.926 0.062 0.217
Wmax 0.349 0.798 0.914 0.999 0.369 0.954 0.127 0.373
WE 0.350 0.782 0.899 0.998 0.371 0.941 0.087 0.270

8 S1(I) 0.366 0.832 0.904 0.999 0.389 0.968 0.740 0.917
S2(I) 0.365 0.831 0.903 1.000 0.385 0.968 0.678 0.894
SE(I) 0.373 0.835 0.907 1.000 0.400 0.968 0.723 0.909
Wmin 0.341 0.781 0.891 0.998 0.368 0.935 0.077 0.235
Wmax 0.342 0.797 0.915 0.998 0.375 0.943 0.101 0.299
WE 0.354 0.799 0.909 0.998 0.388 0.948 0.088 0.269

9 S1(I) 0.372 0.841 0.906 1.000 0.398 0.971 0.717 0.910
S2(I) 0.376 0.843 0.913 1.000 0.401 0.968 0.716 0.905
SE(I) 0.388 0.841 0.914 1.000 0.410 0.973 0.709 0.907
Wmin 0.333 0.781 0.911 0.998 0.357 0.934 0.080 0.265
Wmax 0.354 0.808 0.907 0.998 0.384 0.948 0.085 0.269
WE 0.359 0.809 0.911 0.999 0.393 0.945 0.086 0.272

10 S1(I) 0.372 0.856 0.911 1.000 0.412 0.971 0.715 0.903
S2(I) 0.379 0.849 0.914 1.000 0.396 0.970 0.718 0.906
SE(I) 0.378 0.843 0.915 1.000 0.421 0.970 0.728 0.910
Wmin 0.341 0.778 0.908 0.998 0.357 0.935 0.084 0.270
Wmax 0.337 0.782 0.915 0.998 0.351 0.938 0.089 0.270
WE 0.335 0.778 0.907 0.998 0.355 0.937 0.097 0.294
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Table2. Power values of S1(I), S2(I) and SE(I) and comparison with some precedence-type rank

statistics for the case when n1 = n2 = 30.
r Test Exp(2) Exp(4) G(2, 3) G(2, 6) W (4, 6) W (4, 8) M(3) M(9)

15 S1(I) 0.624 0.985 1.000 1.000 0.670 1.000 0.632 0.861
S2(I) 0.346 0.938 1.000 1.000 0.392 0.998 0.987 0.989
SE(I) 0.605 0.983 1.000 1.000 0.938 1.000 0.820 0.913
Wmin 0.564 0.971 0.999 1.000 0.600 0.999 0.014 0.105
Wmax 0.649 0.991 0.999 1.000 0.693 1.000 0.276 0.762
WE 0.645 0.989 0.999 1.000 0.680 1.000 0.107 0.535

20 S1(I) 0.701 0.996 1.000 1.000 0.737 1.000 0.892 0.997
S2(I) 0.692 0.995 1.000 1.000 0.720 1.000 0.985 0.998
SE(I) 0.707 0.997 1.000 1.000 0.757 1.000 0.897 0.999
Wmin 0.666 0.992 0.999 1.000 0.671 1.000 0.050 0.380
Wmax 0.738 0.997 1.000 1.000 0.761 1.000 0.181 0.663
WE 0.691 0.995 1.000 1.000 0.732 1.000 0.107 0.531

23 S1(I) 0.731 0.998 1.000 1.000 0.783 1.000 0.991 1.000
S2(I) 0.736 0.994 1.000 1.000 0.774 1.000 0.986 1.000
SE(I) 0.523 0.755 1.000 1.000 0.998 1.000 0.992 1.000
Wmin 0.700 0.996 1.000 1.000 0.744 1.000 0.079 0.463
Wmax 0.753 0.998 1.000 1.000 0.790 1.000 0.139 0.600
WE 0.723 0.998 1.000 1.000 0.753 1.000 0.100 0.517

25 S1(I) 0.765 0.999 1.000 1.000 0.807 1.000 0.998 1.000
S2(I) 0.762 0.999 1.000 1.000 0.796 1.000 0.995 1.000
SE(I) 0.762 0.989 1.000 1.000 0.804 1.000 0.998 1.000
Wmin 0.713 0.998 1.000 1.000 0.751 1.000 0.080 0.474
Wmax 0.740 0.997 1.000 1.000 0.785 1.000 0.111 0.535
WE 0.746 0.997 1.000 1.000 0.775 1.000 0.097 0.509

27 S1(I) 0.757 0.998 1.000 1.000 0.802 1.000 0.999 1.000
S2(I) 0.771 0.999 1.000 1.000 0.808 1.000 0.996 1.000
SE(I) 0.773 0.999 1.000 1.000 0.823 1.000 0.998 1.000
Wmin 0.723 0.997 1.000 1.000 0.754 1.000 0.092 0.505
Wmax 0.738 0.996 1.000 1.000 0.783 1.000 0.105 0.542
WE 0.726 0.996 1.000 1.000 0.761 1.000 0.100 0.524

30 S1(I) 0.787 0.999 1.000 1.000 0.800 1.000 1.000 1.000
S2(I) 0.787 0.999 1.000 1.000 0.817 1.000 1.000 1.000
SE(I) 0.792 1.000 1.000 1.000 0.825 1.000 1.000 1.000
Wmin 0.745 0.997 1.000 1.000 0.768 1.000 0.095 0.510
Wmax 0.740 0.997 1.000 1.000 0.766 1.000 0.110 0.540
WE 0.739 0.997 1.000 1.000 0.769 1.000 0.098 0.514
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Abstract

The Bayesian parameter estimation, reliability and hazard functions for Lomax distribution are
discussed based on generalized order statistics . The Bayesian estimators are in fact obtained based on
conjugate prior for the shape parameter and discrete prior for the scale parameter of this distribution,
with respect to both symmetric loss function (squared error) and asymmetric loss function (LINEX).
Finally, the different Bayesian estimators are compared through simulation studies.
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1 Introduction

Generalized order statistics (gos) was introduced as a unified distribution theoretical set-up which con-
tains a variety of approaches of ordered random variables with different interpretations [5]. They indeed
play an important role in reliability theory and lifetime testing. Order statistics with non integral sample
size, sequential order statistics, k-record values and progressively type II censoring, are particular cases
of gos.
During the last decades some distributional properties of gos studied and minimum variance linear un-
biased estimaes of the paramters of Lomax distribution obtained based on gos [3]. Furtheremore, the
approaches of Bayesian and non-Bayesian esimation from Lomax distribution have been compared using
record values [1]. Because of using the Lomax distribution for fitting business failure data, it has an
important position in the field of lifetime testing, [4]. This family of distributions is useful for modeling
and analyzing the lifetime data in medical and biological sciences, engineering, etc. Therefore, many
statistical methods have been developed for this distribution.
Suppose that F be an absolutely continuous distribution function with density function f , and let n ∈ N ,
k ≥ 1 and m̆ = (m1, · · · ,mn−1) ∈ Rn−1 be parameters such that ζr = k + n − r +

∑n−1
j=r mj ≥ 1 for all

r ∈ {1, · · · , n− 1}. The random variables X(r, n, m̆, k), r = 1, · · · , n, are said to be gos if their joint pdf
is of the form

fX(1,n,m̆,k),··· ,X(n,n,m̆,k)(x1, · · · , xn) = k

n−1∏
j=1

ζj

[
n−1∏
i=1

F
mi

(xi)f(xi)

]
F

k−1
(xn)f(xn) (1)

on the cone F−1(0) < x1 ≤ · · · ≤ xn < F−1(1), where F (x) = 1− F (x), (see [5]).
For suitable choices of the parameters gos reduce to the well known ordered random variables, e.g. record
values, progressively type II censoring. If m1 = · · · = mn−1 = −1 and k = 1, then X(r, n, m̆, k) reduces
to the record values. If mi = Ri for i = 1, · · · ,m− 1, mi = 0, for i = m, · · · , n− 1 and k = Rm +1, then
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(1) gives the joint pdf of the progressively type II censoring samples.
The distribution function of Lomax distribution is given by

F (x;α, β) = 1− (1 +
x

β
)−α, x > 0, α, β > 0, (2)

where α and β are the shape and the scale parameters, respectively. The reliability function R(t), and
the hazard function H(t) at time t for the Lomax distribution are respectively, given by

R(t) = (1 +
t

β
)−α, H(t) =

α

β
(1 +

t

β
)−1, t > 0. (3)

In life testing and reliability problems, the nature of losses are not always symmetric and hence the use of
squared error loss function (SELF) is unacceptable in many situations. Therefore, an asymmetric linear
exponential (LINEX) loss function introduces by [7]. Under the assumption that the minimal loss occurs

at ϕ̂ = (α̂, β̂), the LINEX loss function for ϕ = (α, β) can be expressed as

L(∆) ∝ ec∆ − c∆− 1; c ̸= 0, (4)

where ∆ = (ϕ̂− ϕ) and ϕ̂ is an estimate of ϕ.
Up to now, Bayesian estimation method for Lomax distribution parameters has not been addressed
under the gos. Therefore, in this work Bayesian estimators for parameters of Lomax distribution are
derived based on gos, as well as for the survival time parameters. Specifically, in section 2 the Bayesian
estimators are derived based on gos using the conjugate prior on the shape parameter and discretizing
the scale parameter to a finite number of values. The estimators are obtained using both the SELF
and LINEX loss function. Finally, we illustrate the performances of the considered estimators through
simulated data.

2 Bayesian Estimators

Suppose that X1,n,m̆,k, X2,n,m̆,k, · · · , Xn,n,m̆,k, k ≥ 1, are n gos based on the density function from Lomax
distribution. According to (1) and (2), the likelihood function can be obtained

L(α, β;x) = k(
α

β
)n

n−1∏
j=1

γj

 e−αu−v, (5)

where

u =
n−1∑
i=1

ln(1 +
xi
β
)mi+1 + k ln(1 +

xn
β
), v =

n∑
i=1

ln(1 +
xi
β
). (6)

2.1 Known scale parameter

In case where β is known, we assume a gamma (a, b) conjugate prior for α as

π(α|a, b) = ba

Γ(a)
αa−1e−bα, a, b > 0. (7)

Combining the likelihood function (5) and the latter prior, we can obtain the posterior density of α given
the data

π(α|x, β) = (b+ u)n+a

Γ(n+ a)
αn+a−1e−α(b+u), (8)

where u is defined as (6).
Under the SELF, Bayesian estimator of α is given by

α̂BS = E(α|X) =
n+ a

b+ u
. (9)
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Similarly, the Bayesian estimator for the reliability function R(t) and the hazard function H(t) with fixed
t > 0 is given by

R̂BS(t) =

{
1 +

ln(1 + t
β )

b+ u

}−(n+a)

, ĤBS(t) =
n+ a

(b+ u)(t+ β)
. (10)

Alternatively, under the LINEX loss function the Bayesian estimator of α, is given by

α̂BL = −1

c
ln

[∫ ∞

0

e−cαπ(α|x, β)dα
]
=
n+ a

c
ln

[
1 +

c

b+ u

]
. (11)

Moreover, the Bayesian estimators for R(t) and H(t) are given by

R̂BL(t) = −1

c
ln

 ∞∑
i=0

(−c)i

i!

{
1 +

i ln(1 + t
β )

b+ u

}−(n+a)
 , (12)

ĤBL(t) =
n+ a

c
ln

{
1 +

c

(b+ u)(t+ β)

}
. (13)

2.2 Unknown scale and shape parameters β and α

Determining a general joint prior for α and β in case where both are unknown initially requires specifying
a discrete or continuous pdf on one of the α and β. In the literature of Bayesian analysis, Soland’s method
is used [6]. This method involves a family of joint prior pdfs that places a continuous pdf on α and a
discrete distribution on β.
We assume that the scale parameter β is restricted to a finite number of values β1, β2, · · · , βk with
respective prior probabilities ψ1, ψ2, · · · , ψk such that 0 ≤ ψj ≤ 1, and

∑k
j=1 ψj = 1. [i.e. Pr(β = βj) =

ψj ]. Further, suppose that conditional upon β = βj , α has a natural conjugate prior with distribution
gamma(aj , bj) with density

π(α|β = βj) =
b
aj

j

Γ(aj)
αaj−1e−bjα, aj , bj > 0. (14)

Then given the set of n gos values x, the conditional posterior pdf of α is

π(α|β = βj ,x) =
(bj + uj)

n+aj

Γ(n+ aj)
αn+aj−1e−α(bj+uj), α, aj , bj > 0, (15)

with uj =
∑n−1

i=1 ln(1 + xi

βj
)mi+1 + k ln(1 + xn

βj
).

The marginal posterior mass function of βj is obtained as

Pj = Pr(β = βj |x) = A
ψje

−vj b
aj

j Γ(n+ aj)

βn
j (bj + uj)n+ajΓ(aj)

, (16)

where vj =
∑n

i=1 ln(1 +
xi

βj
) and A is the normalized constant given by

A−1 =
k∑

j=1

ψje
−vj b

aj

j Γ(n+ aj)

βn
j (bj + uj)n+ajΓ(aj)

. (17)

The Bayesian estimators of α and β under the SELF can then be obtained using the posterior pdfs (15)
and (16) as the form

α̂BS =
k∑

j=1

Pj(n+ aj)

(bj + uj)
, β̂BS =

k∑
j=1

Pjβj . (18)
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Similarly, the Bayesian estimators of survival functions R(t) and H(t) with fixed t > 0 are given respec-
tively by

R̂BS(t) =
k∑

j=1

Pj

(
1 +

ln(1 + t
βj
)

bj + uj

)−(n+aj)

, ĤBS(t) =
k∑

j=1

Pj
(n+ aj)

(bj + uj)(t+ βj)
. (19)

Alternatively, under the LINEX loss function, the Bayesian estimator for the α and β can be derived

α̂BL = −1

c
ln

 k∑
j=1

Pj

(
1 +

c

bj + uj

)−(n+aj)
 , β̂BL = −1

c
ln

 k∑
j=1

Pje
−cβj

 . (20)

Similarly, the Bayesian estimator for the reliability function R(t) andH(t) with fixed t > 0 are respectively
given by

R̂BL(t) = −1

c
ln

 k∑
j=1

∞∑
i=0

Pj
(−c)i

i!

{
1 +

i ln(1 + t
βj
)

bj + uj

}−(n+aj)
 , (21)

ĤBL(t) = −1

c
ln

 k∑
j=1

Pj

{
1 +

c

(bj + uj)(t+ βj)

}−(n+aj)
 . (22)

Remark: By choosing mi = −1, i = 1, · · · , n− 1 and k = 1, the above results in this section, we obtain
Bayesian estimators corresponds to the nth upper record from Lomax distribution which coincides with
that obtained by [1].

3 Simulation study and comparisons

In order to compare performances of the Bayesian estimators, a simulation study are used based on the
algorithm presented in [2] according to the following steps in the case where β is known.

1. For given values (a=3, b=2) generate α = 2.32 from the prior pdf (7).

2. Using the value α = 2.32 from step 1, with known β = 2 and by choosing the parameters mi = Ri

for i = 1, · · · ,m−1, mi = 0, for i = m, · · · , n−1 and k = Rm+1 in the mentioned algorithm, and
with predetermined censoring scheme, we generate a progressively type II censored sample from the
Lomax pdf. Table 1 shows the generated samples.

Table1. Progressively type II censored sample when β is known
j 1 2 3 4 5 6 7 8 9 10

Xj:m:n 0.028 0.069 0.196 0.22 0.444 0.49 0.631 1.082 1.542 1.731
Rj 1 0 1 2 0 0 3 0 1 2

Table2. Estimators of α, R(t) and H(t) when β is known

Samples Parameters (.)BS (.)BL

Recorded values c = −2 c = −1 c = 1
α 2.089 2.521 2.278 1.937

R(t) 0.253 0.263 0.258 0.248
H(t) 0.522 0.544 0.533 0.512

c = −1 c = 1 c = 5
Progressively type II censored sample α 3.056 3.279 2.869 2.343

R(t) 0.132 0.133 0.130 0.124
H(t) 0.764 0.777 0.752 0.707

3. Using the value α = 2.32 from step 1, with known β = 2 and by choosing the parameters m1 =
· · · = mn−1 = −1 and k = 1 in the mentioned algorithm, we generate n, (n=10) upper record value
from the Lomax pdf as
0.3175, 1.0717, 4.67, 9.448, 18.708, 29.955, 39.286, 70.98, 82.687, 134.157
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4. The Bayesian estimators of α, R(t) and H(t) (for t = 2) under SELF and LINEX loss functions are
computed by using the results in section 2. The results are displayed in Table 2.

4 Conclusion

Based on gos, this paper proposed Bayesian approach to estimate two unknown parameters in the Lomax
distribution, as well as the reliability and hazard functions. We developed the results of [1] in which
Bayesian estimators from the Lomax distribution has been derived using record values. The estimators
obtained using both the symmetric and asymmetric loss functions. Comparisons are made between
different estimators based on simulation study. In case of known β, Table 2 shows that the Bayesian
estimators under the LINEX loss function are doing better than the ones under the SELF for both record
values and progressively type II censoring. The asymmetric Bayesian estimators are more relatively
sensitive to the values of the shape parameter c of the LINEX loss function.
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Abstract

In this paper, some results that are concerned with the class of distributions with bathtub shaped
hazard rate functions has been reviewed. It is known that like some other reliability measures,
the mean residual life function has upside down bathtub shape when the hazard rate function has
bathtub form. One interesting problem arising for lifetime models with bathtub shape is burn-in,
and is extensively studied in the reliability literature. Here, some results about the burn-in topic
have been presented. It has been noticed that the hazard rate function of the order statistics may be
increasing, bathtub shaped, etc. Then, two criteria for burn-in have been considered, and the optimal
burn-in time of the order statistics have been compared with the corresponding optimal burn-in time
of the baseline distribution in terms of their locations.

Key words and phrases: Bathtub shaped hazard rate, Reliability measure, Burn-in, Order
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1 Introduction

One of the well-known reliability measures that characterizes the lifetime distribution is the hazard rate
function, h(x). It is interpreted as the instantaneous risk of failure at time x > 0 given survival up to x.
In other words, h(x)dx is the probability of failure at (x, x+ dx] given that it has survived time x. The
hazard rate function is closely related to other reliability measures like the reliability function, the mean
residual lifetime (MRL), the α-percentile residual lifetime (α-PRL), etc.
In many practical situations, there are objects (manufactured objects or born creatures) exposed to an
excessive risk in an early period of their life, but improve with time until a stable condition called useful
period. When the useful period elapses, the object enter the wear out period in which the failure is caused
by erosion or fatigue, and risk of failure grows with time during it. In attention to model such aging
phenomena, it is preferred to apply a model that accommodates bathtub shaped hazard rate functions
rather than a model with just monotone hazard rate functions. Many authors introduced examples of
lifetime distributions capable of modeling bathtub shaped hazard rate functions in the literature. Among
them we can point out Glaser (1980), Mudholkar and Sirvastava (1993), Navarro and Hernandez (2004),
Xie et al. (2002), Wang (2000) and many others. Also, Lai and Xie (2006) and Nadarajah (2009) provided
lists of such models.
The class of bathtub shaped hazard rate functions has been received considerable attention in both
practical and theoretical aspects of reliability by many authors. For two good reviews about this class of
distributions, one can refer to Rajarshi and Rajarshi (1988) and Lai et al. (2001).
Since objects with BT hazard rate are exposed to high failure rate in early stage of life, they can be tested
to screen out damaged or unreliable objects before putting them to field operation or customers, i.e., the
objects pass a burn-in period to reach more stable conditions. The burn-in topic has been received many
attention in the reliability literature. Many authors have been studied the optimal burn-in time under
different criteria and different assumption, e.g., we can refer to Mi (1994, 1995, 1997), Block et al. (1999),
Block et al. (2002), Cha (2005, 2006), Sheu and Chien (2004, 2005), Bebbington et al. (2007), Kim and
Kuo (2009) and Cha and Finkelstein (2010).
Many authors studied reliability properties of the order statistics and systems specially for the class of
distributions with monotonic hazard rate functions. Among them we can refer to Navarro and Hernandez
(2008), Eryilmaz et al. (2009), Asadi and Bairamov (2005), Asadi and Goliforushani (2008), Kundu et



32 2th Workshop on Reliability and its Applications

al. (2009), Zhang and Yang (2010), Nanda et al. (2010), Khaledi et al. (2011) and many others. Shen et
al. (2010) obtained relationships between the MRL change points of the series and parallel systems and
the change points of the MRL function of components. Here, we presents results that are more general
than some of their findings, but the assumptions in these two approaches have trifle differences.
In this paper, we review some results concerned with the class of BT hazard rate distributions. It has
been shown that the MRL function is upside down bathtub shaped (UBT) when the hazard rate function
exhibits bathtub shape. Then, we briefly review some results about burn-in. We consider that for models
with BT hazard rate functions the hazard rate function of order statistics may be increasing, BT, etc.
Then, two burn-in criteria have been considered, and the optimal burn-in time of a distribution has been
compared with the optimal burn-in time of its corresponding order statistics in terms of their locations.

2 MRL function and BT hazard rate function

Let lifetime of an object is represented by the random variable T following the distribution function F (x)
and the reliability function F̄ (x), x ∈ (0, u), 0 < u ≤ ∞. The conditional remaining lifetime of the object
given survival up to time x is denoted by Tx = (T − x|T ≥ x). If F be absolutely continuous and f(x)
be its density function, then the hazard rate function and the MRL function are respectively defined by

h(x) =
f(x)

F̄ (x)
,

and

m(x) = E(Tx) =

∫ x

0
F̄ (t)dt

F̄ (x)
,

that are related to each other by

h(x) =
m′(x) + 1

m(x)
,

which obviously demonstrates that m′(x) ≥ −1. Mi (1995) and Gupta and Akman (1995) studied the
MRL function of BT hazard rate distributions, and obtained similar results. We recall the following
definition from Mi (1995).

Definition 1. A real valued function g(x), x ∈ [0,∞) has a bathtub (upside down bathtub) shape if there
exist 0 ≤ x1 ≤ x2 ≤ ∞ such that g(x) strictly decreases (increases) for x ∈ [0, x1], is constant on [x1, x2],
and strictly increases for x ≥ x1.

x1 and x2 are usually called change points of g. Clearly, based on this definition the class of BT
functions consists of class of increasing and decreasing functions. Mi (1995) proved the following theorem
that determines shape of the MRL function when the hazard rate function is BT. Let F have a differ-
entiable hazard rate function h that is BT with change points x1 and x2.
(i) If 0 < x1 ≤ x2 <∞, then m(x) is BT with a unique change point x∗ ∈ [0, x1].
(ii) If 0 = x1 ≤ x2 <∞, then m(x) strictly decreases, i.e., there is a unique change point at x = 0.
(iii) If x1 = x2 = ∞, then m(x) strictly increases.
(iv) If 0 < x1 < x2 = ∞, then m(x) strictly increases on [0, x1], and is constant on [x1,∞). Block et al.
(2002) considered a more general problem, and studied behavior of the average hazard rate function, the
MRL function, the average mean residual life function, the harmonic average mean residual life function,
the variance residual life function and the dynamic entropy function.

3 Burn-in

Mi (1994) considered an BT hazard rate object that must pass a given mission time τ > 0, and defined
the burn-in time b that maximizes the reliability for this mission time as the optimal burn-in time, i.e.
for a given mission time τ > 0, b is the optimal burn-in time if

F̄ (b+ τ)

F̄ (b)
= max

x≥0

F̄ (x+ τ)

F̄ (x)
. (1)
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But, the optimal burn-in time in this approach is not unique always, so he defined the set of all optimal
burn-in times as

B = {b : F̄ (b+ τ)

F̄ (b)
= max

x≥0

F̄ (x+ τ)

F̄ (x)
}. (2)

(Mi 1994a). Assume that h(x) is an BT hazard rate function with the change points x1 and x2, and
τ > 0 be a given mission time.
(i) If τ ≤ x2 − x1, then B = [x1, x2 − τ ].
(ii) If τ > x2 − x1, then B = b, and b ∈ [0, x1]. Let b∗ = inf B that is reasonable in many cases,
then b∗ ≤ x1. One of the important measures for quality of an object is the length of time that it works
properly. With this idea, Mi (1995) considered b > 0 that maximizes the MRL function as the optimal
burn-in time, i.e., b is the optimal burn-in time iff

m(b) = max
x≥0

m(x). (3)

Then, he utilized Theorem 4.1 to derive the following results for an BT hazard rate lifetime model.
1. When x1 = 0, burn-in is not needed, i.e., b = 0.
2. if x2 = ∞ and x1 > 0, then b = x1.
3. if x1 = x2 = ∞ that is F has strictly decreasing hazard rate function, then the cost determines the
burn-in time.
4. In the case that 0 < x1 ≤ x2 <∞, the burn-in time b equals the the unique point that maximizes the
MRL function.

4 Order statistics of BT hazard rate distributions

Suppose that Xi, i = 1, 2, ..., n are n lifetimes and Xi:n is the ith order statistics. Usually, the lifetime of
a n − k + 1-out-of-n system composed of n independent and identically distributed (iid) elements X is
represented by Xk:n. The hazard rate function of Xk:n is given by

hk:n(x) = k

(
n

k

)
gk:n(t(x))h(x), (4)

where t(x) = F (x)
F̄ (x)

and gk:n(x) =
xk−1∑k−1

i=0 (
n
i)xi

.

Definition 2. (Shafaei et al. 2011a). a lifetime distribution function F (x), 0 ≤ x < u, 0 < u ≤ ∞ is
said to be BT hazard rate with the change point x0 when h is strictly decreasing at (0, x0), constant in
(x0, x1) for a x1 ∈ (x0, u) and strictly increasing in (x1, u).

Mitra and Basu (1996) studied some properties of the class of BT hazard rate lifetime distributions.
They presented some examples to illustrate that this class is not closed under convolution, coherent sys-
tems or mixtures. Also, Shafaei et al. (2011a) studied the hazard rate of the order statistics corresponding
to an BT hazard rate function, and illustrated that it is eventually increasing, and may be increasing,
BT, etc. The following simple result indicates that when the hazard rate function of X attains finite
value at zero, the order statistics do not exhibit an BT hazard rate function. (i) If hk:n(.), k ≥ 2 is BT,
then h(0) = ∞.
(ii) If hk+1:n(.) or hk+1:n+1(.), k ≥ 1 are BT, then hk:n(0) = ∞. Furthermore, they proved the following
results concerning the shape of the hazard rate function of order statistics. Suppose that FX(.) is BTx0 .
If for every x ∈ (0, x0), we have

h′(x) =
dh(x)

dx
≥ −h

2(x0)ξk:n(t(x0))

F (x0)
, (5)

where ξk:n(x) =
∑k−1

i=0 (k−1−i)(ni)x
i∑k−1

i=0 (
n
i)xi

, and t(x) = F (x)
F̄ (x)

, then Fk:n(.) is IHR. Let FX(.) be BTx0 . If there

exists x∗ such that x∗ ≤ x0, and for every x ∈ (x∗, x0) we have

h′(x) ≥ −h
2(x0)ξk:n(x0)

F (x0)
,
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and for every x ∈ (0, x∗) we have

h′(x) ≤ −(k − 1)
h2(x)

F (x)
,

then Fk:n(.) is an BTx∗ distribution function.

Example 6.2: Murthy and Jiang (1997) studied a sectional Weibull models with the hazard rate
function given by

h(x) =

{
ab(ax)b−1, 0 ≤ x ≤ x0,
cd(cx)d−1, x0 ≤ x,

where x0 = ( bd
ab

cd
)

1
d−b . When b < 1 and d > 1, the hazard rate exhibits a bathtub shape with the change

point x0. As a special case, let a = c. Shafaei et al. (2011a) showed that when b ≤ 0.3873, h2:n(.) has
bathtub shaped with the change point x0.

4.1 Optimal burn-in time of order statistics

Shafaei et al. (2011b) compared the optimal burn-in time of a k-out-of-n system with the one related
to the components based on the conditional reliability for a given mission time τ > 0 criterion de-
fined by Mi (1994) and the MRL criterion studied in Mi (1995). Firstly, consider the following lemma.
(Shafaei et al. 2011b). Let F1 and F2 be two BT hazard rate distribution functions with hazard rate
functions h1(x) and h2(x) = h1(x)ψ(x), where ψ(.) is an increasing function. Let τ be a fixed positive
constant, and B1 and B2 are the sets of all optimal burn-in points, defined in (3.2), corresponding to h1
and h2, respectively. Then we have

inf B2 ≤ inf B1.

Let F (.) and Fk:n(.) are BT hazard rate distribution functions, and B and Bk:n are the sets of all optimal
burn-in times , given in (3.2), corresponding to F (.) and Fk:n(.), respectively, then

inf Bk:n ≤ inf B.

Suppose that Fk:n(.), Fk+1:n(.), Fk:n−1(.), and Fk+1:n+1(.) are BT hazard rate distribution functions,
and respectively, Bk:n, Bk+1:n, Bk:n−1, and Bk+1:n+1 are their corresponding sets of all optimal burn-in
times, determined in (3.2), then we have:
(i) inf Bk+1:n ≤ inf Bk:n,
(ii) inf Bk:n−1 ≤ inf Bk:n,
(iii) inf Bk+1:n+1 ≤ inf Bk:n. In the following results the MRL function has been considered as the
burn-in criterion. Let F1(x) and F2(x), x ∈ (0,∞) be two BT hazard rate distribution functions with
the hazard rate functions h1(x) and h2(x) = ψ(x)h1(x), and x0 and x∗ are the MRL change points of
F1(.) and F2(.), given in (3.3), respectively.
(i) If ψ(x) is increasing, and 0 ≤ ψ(x) ≤ 1, then x∗ ≤ x0.
(ii) If ψ(x) is decreasing, and ψ(x) ≥ 1, then x∗ ≥ x0.
The following theorem indicate that the burn-in time of a parallel system precedes the burn-in time of
its components. Consider F and Fk:n be two BT hazard rate distributions, and x0 and xk:n be their
MRL burn-in times respectively. If k = n, then we have

xk:n ≤ x0.

Let Fk:n, Fk+1:n, Fk:n−1, and Fk+1:n+1 be BT distributions, and take xk:n, xk+1:n, xk:n−1, and xk+1:n+1

as their MRL burn-in times respectively. Then, we have:
(i) xk+1:n ≤ xk:n,
(ii) xk:n−1 ≤ xk:n,
(iii) xk+1:n+1 ≤ xk:n.
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Abstract

In this paper, a new three-parameter lifetime distribution is introduced by combining an extended
Exponential distribution with a Geometric distribution. This flexible distribution has increasing, de-
creasing and upside-down bathtub failure rate shapes. Various properties of the proposed distribution
are discussed. The estimation of the parameter attained by the EM algorithm are obtained.
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1 Introduction

The literature of statistics has numerous distributions for modeling lifetime data. But many, if not
most of these distributions, lack motivation from a lifetime context. For example, there is no apparent
physical motivation for the gamma distribution. It only has a more general mathematical form than
the exponential distribution with one additional parameter, so it has more appropriate properties and
provides better fit. The same arguments apply to Weibull and many other distributions.

The aim of this paper is to introduce a new three parameter lifetime distribution with strong physical
motivation.

The latter distribution can be obtained by considering the lifetime of a parallel system with Z identical
components, where failure occurs when all omponents cease to function, i. e., the lifetime of the system is
X = max{Y1, Y2, . . . Yz}. In this paper, we assume that, the lifetimes of the components are exponentiated
exponential independent random variables and the distribution of their number is Geometric.

Suppose a company has Z parallel systems functioning independently at a given time, where Z is a
geometric random variable with the probability mass function

P (z; p) = pz−1(1− p) (1)

for z = 1, 2, . . . . In addition, suppose that each system is made of α parallel units, so the system will
fail if all of the units fail. Assume, the failure times of the units for the ith system, Zi1, Zi2, . . . , Ziα, are
independent and identical exponential random variables with the scale parameter β. Let Yi denotes the
failure time of ith system with density

f(y;α, β) = αβ exp(−βy)(1− exp(−βy))α−1.

Let X denotes the time to failure of the last out of the Z functioning systems. We can write X =
max{Y1, Y2, . . . , Yz}. Then the probability density function of X, say f(x), can be derived as: the
conditional probability density function of X given Z is f(x|z) = αβz exp(−βx)(1− exp(−βx))αz−1 and
f(x, z) = αβzpz−1(1− p) exp(−βx)(1− exp(−βx))αz−1.

So, the marginal density function of X is

f(x) = αβ(1− p) exp(−βx)

(
1− exp(−βx)

)α−1

(
1− p(1− exp(−βx))α

)2 (2)
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Figure 1 shows the graph of density function of (2) for β = 1 and selected values of α and p.
The cumulative distribution function corresponding to (2) is given by

F (x) =
(1− p)(1− exp(−βx))α

1− p(1− exp(−βx))α
(3)

for x > 0, 0 < p < 1, α > 0 and β > 0. We shall refer to the distribution given by (3) as the max
exponentiated exponential geometric (max EEG) distribution.

The max EEG distribution can be motivated in many other ways, too. Here, we present three other
ways to motivate (3).

Suppose a company has Z parallel systems functioning independently at a given time, where Z is a
geometric random variable with the probability mass function given by (1). Suppose that the lifetime
of each system is an exponentiated exponential random variable given by the cumulative distribution
function (1− exp(−βx))α for x > 0, α > 0 and β > 0. (The exponentiated exponential distribution due
to Gupta and Kundu (1999, 2001) has received widespread attention.) Then the time to failure of the
last out of the Z functioning systems will have the cumulative distribution function given by (3).

For a third motivation, using the Taylor series expansion

(1− px)−a =
∞∑
k=0

(
−a
k

)
(px)k

(3) can be written as

F (x) = (1− p)

∞∑
k=0

(−p)k(1− exp(−βx)αk+α (4)

We can see that the max EEG is a mixture of exponentiated exponential distributions.

2 Hazard Rate Function

The hazard rate function of the max EEG distribution is given by

h(x) =
αβ(1− p) exp(−βx)(1− exp(−βx))α−1(

1− (1− exp(−βx))α
)(

1− p(1− exp(−βx))α
) (5)

for x > 0, α > 0, 0 < p < 1 and β > 0.
Figure 2 shows possible shapes of (5) for β = 1 and selected values of p and α. In the following, we

examine the behaviors of hazard rate function.

∂h(x)

∂x
= −

β
(
1− exp(−βx)

)α(
−α+ exp(βx)

)
(
−1 + exp(βx)

)2(
−1 + (1− exp(−βx))α

)(
−1 + p(1− exp(−βx))α

) (6)

So, the hazard rate function is decreasing for 1
α < exp(−βx).

3 Median

The median of a random variable with the max EEG distribution can be easily obtained by using (3).
this is obvious

Median(X) =
−1

β
ln
(
1− (

1

2− p
)

1
α

)
.
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Figure 1: Probability density function of the max EEG distribution.

4 Order Statistics

Let X1, X2, ..., Xn be a random sample from the max EEG distribution. Let Xi:n denote the ith order
statistic. The probability density function of Xi:n is

fi:n(x) =
z!

(i− 1)!(z − i)!
αβ(1− p)i exp(−βx)

(
1− exp(−βx)

)αi−1(
1− (1− exp(−βx))α

)z−i

(
1− p(1− exp(−βx))α

)z+1

5 Moments

The rth moment of a random variable can be easily obtained by using (4). We have

E(Xr) = (1− p)
∞∑
k=0

(−p)kE(Y r
β,αk+α). (7)

where Y r
β,αk+α is an exponentiated exponential random variable with parameters α and β. Gupta

and Kundu (1999, 2001) showed that the rth moment of Yβ,α can be expressed as

E(Y r
β,αk+α) =

αr!

βr

∞∑
i=0

(−1)i
(
α− 1

i

)
1

(i+ 1)r+1
.

So, we obtain



40 2th Workshop on Reliability and its Applications

1 2 3 4 5 6

beta=1,p=0.5

x
0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5
beta=1, p=0.7

x

h(
x)

1 2 3 4 5 6

beta=1,alpha=0.5

x
0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1
beta=1,alpha=1.5

x

h(
x)

alpha=0.1
alpha=0.5
alpha=1
alpha=2

alpha=0.1
alpha=0.5
alpha=1
alpha=2

p=0.3
p=0.5
p=0.7

p=0.3
p=0.5
p=0.7

Figure 2: Hazard rate function of the max EEG distribution.

E(Xr) = (1− p)
αr!

βr

∞∑
k=0

(−p)k(k + α)

∞∑
i=0

(−1)i
(
k + α− 1

i

)
1

(i+ 1)r+1
,

The first two moments are:

E(X) =
(1− p)

β

∞∑
k=0

(−p)k(k + α)

∞∑
i=0

(−1)i
(
k + α− 1

i

)
1

(i+ 1)2

and

E(X2) =
2(1− p)

β2

∞∑
k=0

(−p)k(k + α)
∞∑
i=0

(−1)i
(
k + α− 1

i

)
1

(i+ 1)3
.

6 Rényi Entropy

An entropy is a measure of variation of the uncertainty. The Rényi entropy of a random variable with
probability density function f(.) is defined as

IR(γ) =
1

1− γ
log

∫ ∞

0

fγ(x)dx

for γ > 0 and γ ̸= 1.
Here, we derive expressions for the Rényi entropies.∫ ∞

0

fγ(x)dx =

∫ ∞

0

(αβ(1− p))γ exp(−βxγ) (1− exp(−βx))γα−γ

(1− p(1− exp(−βx))α)2γ
dx

= (αβ(1− p))γ
∞∑
k=0

(
−2γ

k

)
pk
∫ ∞

0

exp(−βxγ)(1− exp(−βx))γα−γ+αkdx

= (α(1− p))γβγ−1
∞∑
k=0

(
−2γ

k

)
pk
∫ ∞

0

yγ−1(1− y)γα−γ+αkdy

= (α(1− p))γβγ−1
∞∑
k=0

(
−2γ

k

)
pkB(γ, γα− γ + αk + 1)
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IR(γ) =
γ

1− γ
log
(
α(1− p)

)
+ log β +

1

γ − 1
log
( ∞∑
k=0

(
−2γ

k

)
pkB(γ, γα− γ + αk + 1)

)

7 Estimation of the parameters

7.1 Estimation by maximum likelihood

In this section, we want to obtain the maximum likelihood estimation of parameters. The log-likelihood
function based on the observed sample size of n, yobs = (xi; i = 1, 2, . . . , n) from (2) is given by

ℓ = n log
(
αβ(1− p)

)
−β

n∑
i=1

xi +

n∑
i=1

(α− 1) log
(
1− exp(−βx)

)
−2

n∑
i=1

log
(
1− p(1− exp(−βx))α

)
Differentiating with respect to θ and equating to zero we obtain the gradients as

∂ℓ

∂α
=
n

α
+

n∑
i=1

log
(
1− exp(−βxi)

)
+2p

n∑
i=1

(
1− exp(−βxi)

)α
log
(
1− exp(−βxi)

)
1− p

(
1− exp(−βxi)

)α (8)

∂ℓ

∂β
=
n

β
−

n∑
i=1

xi +
n∑

i=1

(α− 1)
xi exp(−βxi)
1− exp(−βxi)

+ 2αp
n∑

i=1

xi exp(−βxi)
(
1− exp(−βxi)

)α−1

1− p
(
1− exp(−βxi)

)α (9)

∂ℓ

∂p
=

−n
1− p

+ 2
n∑

i=1

(
1− exp(−βxi)

)α
1− p

(
1− exp(−βxi)

)α (10)

To achieve estimations via ML method, it is not easy to solve the equations ∂ℓ
∂α ,

∂ℓ
∂β and ∂ℓ

∂p , directly.
In the following, theorems 1, 2 and 3 express the conditions for the existence and uniqueness of the MLE,
when the other parameters are given or known.

7.2 EM algorithm

An alternative method is the EM algorithm. It is a very powerful tool in handling the incomplete data
problem ([3]; [7]). It is an iterative method by repeatedly replacing the missing data with estimated
values and updating the parameters. It is especially useful if the complete data set is easy to analyze.
Recently, EM algorithm has been used by several authors, see [2], [1], [8], [6] and [9].

To start the algorithm, hypothetical complete-data distribution is defined with density function
f(x, z;α, β, p) = αβzpz−1(1 − p) exp(−βx)(1 − exp(−βx))αz−1, z = 1, 2, . . . ; α, β, x > 0 and 0 ≤ p ≤ 1.
Thus, it is straightforward to verify that the Estep of an EM cycle requires the computation of the con-
ditional expectation of (Z|X;α(h), β(h), p(h)), where (α(h), β(h), p(h)) is the current estimate of (α, β, p).
Using,

p(z|x) = zpz−1
(
1− exp(−βx)

)αz−α(
1− p(1− exp(−βx))α

)2
, the following found to be

E(z|x, α(h), β(h), p(h)) =

(
1 + p(h)(1− exp(−β(h)x))α

(h)
)

(
1− p(h)(1− exp(−β(h)x))α(h)

) .
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The EM cycle is completed with M-step, which is complete data maximum likelihood over (α, β, p), with
the missing Zs replaced by their conditional expectations E(z|x, α(h), β(h), p(h)) (Adamidis and Loukas,
1998). Thus, an EM iteration is given by

α(h+1) =
−n∑n

i=1 zi log
(
1− exp(−β(h)xi)

) (11)

n

β(h+1)
+

n∑
i=1

xi exp(−β(h+1)xi)
(
α(h)zi − 1

)
(
1− exp(−β(h+1)xi)

) =
n∑

i=1

xi (12)

and p(h+1) =

∑n
i=1 zi − n∑n

i=1 zi
(13)

where

zi =

(
1 + p(h)

(
1− exp(−β(h)x)

)α(h))
(
1− p(h)

(
1− exp(−β(h)x)

)α(h)
)
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1 Introduction

In the context of reliability, the stress-strength model describes the life of a component which has a
random strength X and is subjected to random stress Y . Then R = P (Y < X) can be considered as
a measure of system performance. The system becomes out of control if the system stress exceeds its
strength. Since R represents a relation between the stress and strength of a system, it is popularly known
as the stress-strength parameter of that system. For more application of R, see Kotz et al. (2003). Many
authors have studied the stress-strength parameter R. Among them, Awad et al. (1981), Gupta and
Gupta (1990), Ahmad et al. (1997), Kundu and Gupta (2005) and Raqab et al. (2008).

Balakrishnan and Leung (1988) defined the generalized logistic (GL) distribution as one of three
generalized forms of the standard logistic distribution. The GL distribution has received additional
attention in estimating its parameters for practical usage. See, for example, Balakrishnan (1991) and
Asgharzadeh (2006). For α > 0 and λ > 0, the two-parameter GL distribution has the cumulative
distribution function (cdf)

F (x;α, λ) = (1 + e−λx)−α, −∞ < x <∞ (1.1)

and has the probability density function (pdf)

f(x;α, λ) = αλe−λx(1 + e−λx)−α−1. −∞ < x <∞ (1.2)

Here α and λ are the shape and scale parameters, respectively. The two-parameter GL distribution will
be denoted by GL(α, λ). The density in (1.2) has been obtained by compounding an extreme value
distribution with a gamma distribution. It is observed by Balakrishnan and Leung (1988) that this
distribution is skewed and its kurtosis coefficient is greater than that of the logistic distribution.

In this paper, we consider the problem of estimating R = P (Y < X), under the assumption that
X ∼ GL(α, λ), Y ∼ GL(β, λ), and X and Y are independently distributed. Then it can be easily seen
that

R = P (Y < X) =
α

α+ β
. (1.3)



44 2th Workshop on Reliability and its Applications

2 Maximum Likelihood Estimator of R

To compute the maximum likelihood estimator (MLE) of R, first we obtain the MLE of α, β and λ.
Suppose X1, X2, · · · , Xn is a random sample from GL(α, λ) and Y1, Y2, · · · , Ym is a random sample from
GL(β, λ). Therefore the log-likelihood function of α, β and λ is given by

l(α, β, λ) = n ln(α) +m ln(β) + (n+m) ln(λ)− λ

 n∑
i=1

xi +
m∑
j=1

yj


− (α+ 1)S1(x, λ)− (β + 1)S2(y, λ)

where

S1(x, λ) =

n∑
i=1

ln(1 + e−λxi) , S2(y, λ) =

m∑
j=1

ln(1 + e−λyj ) (2.2)

.
The MLEs of α, β and λ, say α̂, β̂ and λ̂ respectively, can be obtained as the solution of

∂l

∂α
=
n

α
− S1(x, λ) = 0, (2.3)

∂l

∂β
=
m

β
− S2(y, λ) = 0, (2.4)

∂l

∂λ
=

n+m

λ
−

 n∑
i=1

xi +
m∑
j=1

yj

+ (α+ 1)
n∑

i=1

xie
−λxi

1 + e−λxi

+ (β + 1)
m∑
j=1

yje
−λyj

1 + e−λyj
= 0. (2.5)

From (2.3) and (2.4), we obtain

α̂(λ) =
n

S1(x, λ)
, β̂(λ) =

m

S2(y, λ)
. (2.6)

Putting the values of α̂(λ) and β̂(λ) into (2.5), λ̂ can be obtained as a fixed point solution of the
following equation

g(λ) = λ (2.7)

where

g(λ) =
n+m∑n

i=1 xi +
∑m

j=1 yj − (α̂(λ) + 1)
∑n

i=1
xie−λxi

1+e−λxi
− (β̂(λ) + 1)

∑m
j=1

yje
−λyj

1+e−λyj

A simple iterative procedure g(λ(j+1)) = λ(j+1) where λ(j) is the jth iterate, can be used to find the

solution of (2.7). Once we obtain λ̂ML, the MLE of α and β, can be deduced from (2.3) and (2.4) as

α̂ML = α̂(λ̂ML) and β̂ML = β̂(λ̂ML). Therefore, we compute the MLE of R as

R̂ML =
α̂ML

α̂ML + β̂ML

. (2.8)

3 Asymptotic Interval Estimation

In this section, first we obtain the asymptotic distribution of θ̂ = (α̂, β̂, λ̂) and then derive the asymptotic

distribution of R̂. Based on the asymptotic distribution of R̂, we obtain the asymptotic confidence interval
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of R. Let us denote the Fisher information matrix of θ = (α, β, λ) as J(θ) = E(I; θ) where I = (Iij(θ))

for i, j = 1, 2, 3. Therefore,

I(θ) = −


∂2l
∂α2

∂2l
∂α∂β

∂2l
∂α∂λ

∂2l
∂β∂α

∂2l
∂β2

∂2l
∂β∂λ

∂2l
∂λ∂α

∂2l
∂λ∂β

∂2l
∂λ2

 =

 I11 I12 I13
I21 I22 I23
I31 I32 I33


It is easy to see that

I11 =
n

α2
,

I12 = I21 = 0,

I13 = I31 = −
n∑

i=1

xie
−λxi

1 + e−λxi

I22 =
m

β2

I23 = I32 = −
m∑
j=1

yje
−λyj

1 + e−λyj

I33 =
n+m

λ2
+ (α+ 1)

n∑
i=1

x2i e
−λxi

(1 + e−λxi)2
+ (β + 1)

m∑
j=1

y2j e
−λyj

(1 + e−λyj )2

We have

J11 =
n

α2
,

J12 = J21 = 0,

J13 = J31 = − n

λ(α+ 1)
[Ψ(α) + γ − 1]

J22 =
m

β2

J23 = J32 = − m

λ(β + 1)
[Ψ(β) + γ − 1]

J33 =
n+m

λ2
+

n

λ2(α+ 2)

×
[
α[Ψ′(α) + Ψ2(α)] + 2 [(α(γ − 1) + 1)Ψ(α)− (γ(α− 1) + 1)] + α[γ2 +

π2

6
]

]
+

m

λ2(β + 2)

×
[
β[Ψ′(β) + Ψ2(β)] + 2 [(β(γ − 1) + 1)Ψ(β)− (γ(β − 1) + 1)] + β[γ2 +

π2

6
]

]
where Ψ(t) = d

dt ln(Γ(t)), Ψ
′(t) = d

dtΨ(t) and γ = −Ψ(1) = 0.5772.

Theorem 1: As n→ ∞, m→ ∞ and n
m → p, then(√

n(α̂− α),
√
m(β̂ − β),

√
n(λ̂− λ)

)
d−→ N3(0,A

−1(α, β, λ))

where

A(α, β, λ) =

 a11 0 a13
0 a22 a23
a31 a32 a33
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and

a11 = lim
n,m→∞

J11
n

=
1

α2
, a13 = a31 = lim

n,m→∞

J13
n

= −Ψ(α) + γ − 1

λ(α+ 1)

a22 = lim
n,m→∞

J22
m

=
1

β2
, a23 = a32 = lim

n,m→∞

√
p

n
J23 = −Ψ(β) + γ − 1

λ(β + 1)
√
p

a33 = lim
n,m→∞

J33
n

=
p+ 1

pλ2
+

1

λ2(α+ 2)

×
[
α[Ψ′(α) + Ψ2(α)] + 2 [(α(γ − 1) + 1)Ψ(α)− (γ(α− 1) + 1)] + α[γ2 +

π2

6
]

]
+

1

pλ2(β + 2)

×
[
β[Ψ′(β) + Ψ2(β)] + 2 [(β(γ − 1) + 1)Ψ(β)− (γ(β − 1) + 1)] + β[γ2 +

π2

6
]

]

Proof : The proof follows by expanding the derivative of the log-likelihood function using Taylor series,
and using the Central limit theorem. Now we have the main result:
Theorem 2: As n→ ∞, m→ ∞ and n

m → p, then

√
n(R̂−R) → N(0, B) (2.10)

where B=btA−1b, and

b =


∂R
∂α

∂R
∂β

∂R
∂λ

 =
1

(α + β)2


β

−α

0

 , A
−1

=
1

u


a22a33 − a2

23 a13a32 −a13a22

a23a31 a11a33 − a2
13 −a11a23

−a22a31 −a11a32 a11a22



and
u = a11a22a33 − a11a23a32 − a13a22a31.

Proof: It follows from Theorem 1.

It’s easy to show that

B =
1

u(α+ β)4
[
β2(a22a33 − a223)− 2αβ(a13a23) + α2(a11a33 − a213)

]
Theorem 2 can be used to construct the asymptotic confidence interval of R. To compute the con-

fidence interval of R, the variance B needs to be estimated. We recommend using the empirical Fisher
information matrix, and the MLE estimates of α, β and λ to estimate B, which is very convenient. Now,
we can obtain the 100(1 − γ)% confidence interval for R by using asymptotic distributions of the MLE
as folows:

(R̂− z1− γ
2

√
B̂√
n
, R̂+ z1− γ

2

√
B̂√
n
).

where zγ is 100γth percentile of N(0, 1).

4 Data Analysis

In this section, we present a complete analysis of simulated data. The data has been generated using
n = m = 15 and α = 1, β = 2 and λ = 1. Therefore, R = 0.333. The X values are

-1.927 -1.697 -1.296 -1.188 -1.100 -1.004 -0.433 -0.427

-0.319 -0.273 -0.155 0.011 0.284 2.059 3.147
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and the corresponding Y values are

-1.046 -0.940 -0.881 -0.661 -0.484 -0.178 0.104 0.185

1.020 1.255 1.283 1.685 2.025 2.269 2.589

The ML estimation of R become 0.363, and the corresponding 95% confidence intervals become
(0.195,0.530).
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1 Introduction

There are situations in reliability and survival analysis for which the experiment may not terminate on
an adequate time under the normal conditions. In such situations, accelerated life-testing experiments
have been offered to obtain adequate life data. See, for example, Nelson (1990) and Bagdonavicius and
Nikulin (2002). Step-stress accelerated life testing (SSALT) is a special class of accelerated life-testing for
which the stress levels of the experiment change at some pre-specified times. Balakrishnan et al. (2009)
derived exact inference for simple step-stress model from the exponential distribution when there is time
constraint on the duration of the experiment. See also, Balakrishnan and Xie (2007, a) and Balakrishnan
and Han (2008). DeGroot and Goel (1979) proposed a Bayesian inference model for SSALT and an
criterion optimality for simple SSALT in the framework of Bayesian decision theory. See also, Van Dorp
et al. (1996) and Van Dorp and Mazzuchi (2004, 2005) and Erto, and Giorgio (2002). The classical
approach treats parameters of life distribution as fixed but unknown constants but Bayes approach
considers them as random variables whit a prior distributions for these parameters. Prior distributions
are constructed by existing information or subjective judgments.
In some situations, the life times of the units in an experiment depend on the number of times the units
are switched on and off or the number of shocks they receive. Let w be the number of switch on and off
or shocks the units receive until they fail, so, w is considered as the associated failure time. Here, the
life-testing experiment are investigated in a discrete set up. See, Nagaraja (1992) for more details about
the results on order statistics of a random sample taken from a discrete population. Censored samples
in discrete set up have been studied by some authors. See, for example, Rezaei and Arghami (2002),
Davarzani and Parsian (2011) and Balakrishnan et al. (2011). This paper proposes a Bayesian inference
model for a simple SSALT having only one change between two stress levels, when Type-I censoring is
used. We assume that the failure times at each stress level follow a geometric distribution.

The rest of the paper is as follows: In Section 2 some preliminaries are presented. In Section 3, the
Byesian estimation of the parameters of the geometric distribution is investigated for a simple step-stress
model with Type-I censored sample. Finally, in Section 4, an example is given to illustrate the results of
the paper.
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2 Preliminaries

Consider a simple step-stress scheme with only two stress levels S1 and S2 and assume that the associated
distributions at levels S1 and S2 are geometric with successive probabilities p1 and p2, respectively. The
probability mass function (pmf) and cumulative distribution function (cdf) are given by

Pj(Xj = x) = pjq
x−1
j , x = 1, 2, . . . ,

Fj(x; pj) = 1− qxj , x = 1, 2, . . . (1)

The parameters of interest in this paper are:(i) the successive probability at level Sj , i.e.,pj , (j = 1, 2),
(ii) the mathematical expectation at level Sj ,i.e., µj = 1

pj
, (iii) the survival function of the level Sj at

x0 : F̄j(x0) = qx0
j .

Suppose that the normal conditions (level S1) of an experiment change to level S2 at point w1. Therefore,
using (1), the cumulative exposure distribution (ced) G(x) is

G(x) =

{
G1(x) = F1(x; p1), x = 1, 2, . . . , w1,
G2(x) = F2

(
x− (1− log q1/ log q2)w1; p2

)
, x = w1 + 1, w1 + 2, . . . ,

=

{
G1(x) = 1− qx1 , x = 1, 2, . . . , w1,
G2(x) = 1− qw1

1 qx−w1
2 , x = w1 + 1, w1 + 2, . . .

(2)

and the corresponding pmf g(x) is as follows

g(x) =

{
g1(x) = p1q

x−1
1 , x = 1, 2, . . . , w1,

g2(x) = p2q
w1
1 q

x−(w1+1)
2 , x = w1 + 1, w1 + 2, . . . .

We now introduce some notations will be used throughout the paper: Xi:n denotes the ith smallest order
statistics in a sample of size n from the geometric distribution. N1 is the number of observations that
are less than or equal to w1 and N2 denotes the number of data points that are less than or equal to w2

and greater than w1, for which N1 + N2 ≤ n. Using these notation, we will observe the following data
set under Type-I censoring scheme:

X1:n ≤ X2:n ≤ · · · ≤ XN1:n ≤ w1 < XN1+1:n ≤ · · · ≤ XN1+N2:n ≤ w2. (3)

Notice that in the special case of N1+N2 = n, the complete sample is observed. To study the estimation
problem of the parameter of interest based on the data set in (3), we need to obtain the joint distribution
of X1:n, . . . , XN1+N2:n. In order to provide explicit expression for the joint distribution of discrete-order
statistics, it is necessary to use the ‘tie- run” technique which is defined by Gan and Bain (1995) regarding
the number and lengths of runs of tied observations. A subchain ti1 ≤ ti2 ≤ · · · ≤ tin of real numbers is
said to have r tie-runs (1 ≤ r ≤ n) with length zk (1 ≤ k ≤ r) for the kth one, if

ti1 = · · · = tiz1 < tiz1+1 = · · · = tiz1+z2
< · · · < tin−zr+1 = · · · = tin ,

with
∑r

k=1 zk = n. Let X1, . . . , Xn be iid discrete random variables from the ced in (2). Using the
concept of tie-run, given p1 and p2, the joint pmf of X1:n, · · · , XN1+N2:n, N1, N2 is as follows

L(p1, p2) =
n!

(n− n1 − n2)!

( r∏
j=1

zj !

)−1 n1∏
i=1

g1(xi:n)

×
n1+n2∏
i=n1+1

g2(xi:n)
(
1−G2(w2)

)n−n1−n2

=
n!

(n− n1 − n2)!

( r∏
j=1

zj !

)−1

pn1
1 qd1

1 p
n2
2 qd2

2 , (4)
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where r is equal to the number of tie-runs with length zk for the jth one, d1 and d2 are the observed
values of , D1 and D2, respectively, where

D1 =

N1∑
i=1

Xi:n −N1 + w1(n−N1), (5)

D2 =

N1+N2∑
i=N1+1

Xi:n − (w1 + 1)N2 + (w2 − w1)(n−N1 −N2). (6)

3 Baysian estimation

In this section we present and illustrate the methodology for obtaining the Bayes estimators.Toward this
end, we assume that the parameters p1 and p2 behave as independent random variables. Also, suppose
the random variable pj has Beta prior distribution with parameters αj and βj (j = 1, 2). That is, the
prior density function of pj , j = 1, 2, takes the following form

πj(pj) =
1

β(αj , βj)
p
αj−1
j (1− pj)

βj−1, 0 < pj < 1. (7)

Therefore, by performing some algebraic calculations, it con be shown that, the joint posterior pdf of p1
and p2 is

π(p1, p2|data) =
pa1−1
1 (1− p1)

b1−1pa2−1
2 (1− p2)

b2−1∏2
j=1B(aj , bj)

, (8)

where aj = Nj + αj . and bj = Dj + βj (j = 1, 2), for which D1 and D2 are as defined in (5) and (6),
respectively. Using (8), the marginal posterior of pj is

πj(pj |data) =
p
aj−1
j (1− pj)

bj−1

B(aj , bj)
, j = 1, 2. (9)

3.1 Bayesian point estimation

To proceed the problem of Bayes estimation, we use the squared error loss (SEL) function. Let θ̂ be any

estimator for θ, then the SEL function is defined by L(θ̂ − θ) = (θ̂ − θ)2. Using the SEL function, the
Bayes estimate of the unknown parameter is simply the mean of the posterior distribution. It can be
shown that the Bayes risk is the variance of the posterior distribution. In the following results, the Bayes
estimators for the parameters of interest in this paper are presented. Under the of SEL function, we
have
(i) The Bayes estimator for pj(j = 1, 2) is given by

p̂j =
aj

aj + bj
; (10)

(ii) The Bayes risk associated with p̂j say Rp̂j , is

Rp̂j =
ajbj

(aj + bj + 1)(aj + bj)2
.

the Bayes estimator for µj , j = 1, 2 is

µ̂j =
aj + bj − 1

aj − 1
, (11)

Moreover the Bayes risk associated with µ̂j say Rµ̂j , is

Rµ̂j =
(aj + bj − 2)(aj + bj − 1)

(aj − 2)(aj − 1)
−
(
aj + bj − 1

aj − 1

)2

.
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For estimating the survival function of the level Sj at x0, we have (i) The Bayes estimator for F̄j(x0)(j =
1, 2) is

ˆ̄Fj(x0) =
b
[x0]
j

(aj + bj)[x0]
; (12)

where

b
[x0]
j = (bj + x0 − 1)(bj + x0 − 2) . . . (bj + 1) bj ,

(aj + bj)
[x0] = (aj + bj + x0 − 1)(aj + bj + x0 − 2) . . . (bj + aj),

(ii) The Bayes risk associated with ˆ̄Fj(x0) say R ˆ̄Fj(x0)
, is

R ˆ̄Fj(x0)
=

b
[2x0]
j

(aj + bj)[2x0]
−
{

b
[x0]
j

(aj + bj)[x0]

}2

;

where
b
[2x0]
j = (bj + 2x0 − 1)(bj + 2x0 − 2) . . . (bj + 1) bj ,

(aj + bj)
[2x0] = (aj + bj + 2x0 − 1)(aj + bj + 2x0 − 2) . . . (bj + aj).

3.2 Bayesian interval estimation

Once the posterior probability density function h(θ|data) of the unknown parameter θ is derived,the
interval is 100(1− α)% Bayesian confidence interval for θ, is

P (L ≤ θ ≤ U |data) = 1− α. (13)

Using (9) and (13), a 100(1 − α)% Bayesian confidence intervals for pj(j = 1, 2), say (Lj , Uj), can be
derived by solving the following two equations

α

2
=

∫ Lj

0

p
aj−1
j (1− pj)

bj−1

B(aj , bj)
dpj ,

α

2
=

∫ 1

Uj

p
aj−1
j (1− pj)

bj−1

B(aj , bj)
dpj . (14)

Let (Lj , Uj) be a 100(1 − α)% confidence interval for θj and S(·) be any increasing function, then{
S(Lj), S(Uj)

}
is a 100(1−α)% confidence interval for S(·), and if S(·) be any decreasing function then{

S(Uj), S(Lj)
}
is a 100(1 − α)% confidence interval for S(θj). Therefor, using (14), one may construct

a confidence interval for other parameters of interest in the paper.

4 Illustrative example

To illustrate the proposed procedure in this paper, we consider a numerical example. Assuming w1 = 15,
a random ample of size 30 has been generated from ced in (2) with p1 = 0.015 and p2 = 0.056. The
results are presented in Table 1.

Table 1. Generated sample of size 30 from ced in (2) with w1 = 15,
p1 = 0.015 and p2 = 0.056.

Parameter Failure times

p1 4 7 9 13 15
p2 16 17 18 18 19 19 20 20 21 23 24 25

26 28 29 31 32 35 36 40 40 43 48 58

Using the data in Table 1, we would obtain N1 = 5 is the number of units that fail at stress level s0.
To investigate the variety of inference, we use different choices of w2. From Table 1, for w2 = 20, 28 and
35, the number of units that fail at stress level s1 is given by N2 = 8, 14 and 18, respectively.

The values of the point estimation for pj , µj and F̄j(9) (j = 1, 2) have been obtained using (10), (11)
and (12), respectively. Similar results for the interval estimation have been derived using (14). Toward
this end, we consider the beta prior distributions with parameters (0.43, 23.4) and (2.17, 38.6) for p1 and
p2, respectively. The results are summarized in Table 2.
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Table 2. Values of Bayesian point and interval estimation for the parameters of interest based on the data in

Table 1 for w1 = 15 and some choices of w2.

w2 = 20 w2 = 28 w2 = 35

point interval point interval point interval

p1 0.0122 (0.0042, 0.0242)
p2 0.0666 (0.0328, 0.1110) 0.0604 (0.0352, 0.0918) 0.0608 (0.0377, 0.0889)
µ1 100.64 (41.310, 237.15)
µ2 16.5507 (9.0089, 30.441) 17.5854 (10.891, 28.437) 17.2546 (11.253, 26.504)

F̄1(9) 00.8859 (00.8021 0.9627)
F̄2(9) 00.5117 (00.3468, 0.7404) 0.5417 (0.4203, 0.7246) 0.5384 (0.4328, 0.7074)

References

[1] Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models: Modeling and Statistical Anal-
ysis. Chapman & Hall/CRC Press, Boca Raton, FL.
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The interval estimation of the survival function of the two-parameter exponential distribution
on the basis of the progressively Type-II censored samples is investigated. Toward this end, the
concept of the generalized confidence intervals (GCIs) is used and the lower and upper generalized
confidence limits (GCLs) are obtained. It will be shown that the coverage probabilities of the GCLs
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1 Introduction

It is well-known that the exponential distribution is one of the commonly used models in several areas of
statistical practice, including survival and reliability analysis. It is used to model data with a constant
failure rate; for more details concerning the exponential model and related topics, one may refer to the
book by Balakrishnan and Basu [2]. A random variable X is said to have a two-parameter exponential
distribution if its cumulative distribution function (cdf) is

F (x;µ, σ) = 1− e−(x−µ)/σ, x ≥ µ, σ > 0, (1)

where µ and σ are the location and scale parameters, respectively. A problem of interest in the reliability
analysis is to investigate the confidence intervals (CIs) for the survival function at a specified point τ ,
which for the two-parameter exponential distribution is defined by

R(τ ;µ, σ) = e−(τ−µ)/σ, τ ≥ µ. (2)

Engelhardt and Bain [5] suggested an approximate method based on Type-II censored data. See also, Roy
and Mathew [7] and Fernández [6]. In this paper, we study the problem of constructing GCIs for R(τ ;µ, σ)
on the basis of the progressively Type-II censored order statistics. The model of progressive Type-II
censoring is of importance in the field of reliability and life testing. Suppose n units are simultaneously
placed on a lifetime test. At the time of the ith failure, Ri surviving units are randomly censored from
the experiment, 1 ≤ i ≤ m. Thus, if m failures are observed, then R1 + · · ·+Rm units are progressively
censored; here, R = (R1, . . . , Rm) denotes the progressive censoring scheme. The interested readers may
refer to the book by Balakrishnan and Aggarwala [1]. See also, Balakrishnan et al. [3] and Burkschat et
al. [4].

The rest of the paper is as follows: In Section 2, some preliminaries are presented. In Section 3, the
GCIs for the survival function of the two-parameter exponential distribution are derived on the basis of
the progressively Type-II censored order statistics. In section 4, some concluding remarks are stated.

2 Preliminaries

Let {Y1, . . . , Yn} be a random sample of size n from the two-parameter exponential distribution with cdf
in (1). Denote the first m progressively Type-II censored order statistics by Y R

1:m:n ≤ · · · ≤ Y R
m:m:n (1 ≤
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m ≤ n), where R = (R1, . . . , Rm) stands for the corresponding progressive censoring scheme. The
likelihood function of the parameters of the two-parameter exponential distribution with cdf in (1) based
on the progressively Type-II censored order statistics can be written as

L(µ, σ) = cσ−m exp

{
−

m∑
i=1

(Ri + 1)
yi − µ

σ

}
,

where c = n(n−R1−1) · · · (n−R1−R2−...−Rm−1−m+1) and yi is the observed value of Y R
i:m:n. Assuming

m ≥ 2, the maximum likelihood estimators (MLEs) of µ and σ based on Y = {Y R
1:m:n, ..., Y

R
m:m:n} are

given by

µ̂ = µ̂ (Y) = Y R
1:m:n and σ̂ = σ̂ (Y) =

1

m

m∑
i=2

(Ri + 1) (Y R
i:m:n − Y R

1:m:n). (3)

Let us take
Z1 = (µ̂− µ)/σ and Z2 = σ̂/σ, (4)

where µ̂ and σ̂ are as defined in (3). It can be shown that 2nZ1 ∼ χ2
2 and independently 2mZ2 ∼ χ2

2(m−1),

where χ2
m stands for a chi-square distribution with m degrees of freedom (see, Balakrishnan et al., [3]).

3 Generalized confidence interval

In this section, we use the concept of the GCI to arrive the exact CIs for R(τ ;µ, σ). Let X be a random
vector whose distribution depends on γ and ξ, a scalar parameter of interest and a nuisance parameter,
respectively. Furthermore, let x denote the observed value of X. The random variable U(X;x, γ, ξ) is
called a generalized pivotal quantity if it satisfies in the following two conditions:

(i) The distribution of U(X;x, γ, ξ) is free of unknown parameters, for fixed x,
(ii) The observed value of U(X;x, γ, ξ), i.e., U(x;x, γ, ξ), is equal to γ.

(5)

The CIs for γ obtained using the percentiles of U(X;x, γ, ξ) are referred to as the GCIs. Therefore, the
Uα(x) is a 100(1− α)% lower GCL for γ if

P (U(X;x, γ, ξ) ≥ Uα(x)) = 1− α. (6)

The quantiles Uα(x) and U1−α(x) are the lower and upper 100(1 − α)% GCLs for γ, respectively,
whereas [Uα/2(x), U1−α/2(x)] is the two-sided equi-tailed 100(1− α)% GCI for γ based on U(X;x, γ, ξ).
Notice that the coverage probability of such a confidence interval could depend on unknown parameters
and hence it may not be exactly 1− α (see, for details, [8] and [9]).
To construct a GCI for R(τ ;µ, σ), we first look for generalized pivotal quantities for µ and σ, denoted
by Uµ and Uσ, respectively, satisfying the properties in (5). That is, the distribution of (Uµ, Uσ) is free
of any unknown parameters, and the observed value of (Uµ, Uσ) is (µ, σ). Toward this end, let µ̂0 and
σ̂0 denote the observed values of µ̂ and σ̂, respectively, where µ̂ and σ̂ are as defined in (3). Consider a
choice of Uµ and Uσ as follows

Uµ = µ̂0 −
Z1

Z2
σ̂0 and Uσ =

σ̂0
Z2
. (7)

Note that a generalized pivotal quantity for any function of µ and σ, say h(µ, σ), is given by h(Uµ, Uσ).
Here, the function h(µ, σ) can be quite arbitrary and could be rather complicated. Therefore, using the
pivots in (7), a generalized pivotal quantity for R(τ ;µ, σ) in (2) is given by

UR = UR(Y;y, µ, σ) = exp{−τ − Uµ

Uσ
} = exp{−Z1 −

τ − µ̂0

σ̂0
Z2}. (8)

Since a confidence limit (CL) for R(τ ;µ, σ) must be restricted to be 1, it is reasonable to use an alternative
generalized pivot for R(τ ;µ, σ) as follows

U∗ = U∗(Y;y, µ, σ) = min{1, UR(Y;y, µ, σ)}, (9)

where UR(Y;y, µ, σ) is as defined in (8). Clearly, the distribution of U∗ is independent of (µ, σ) and
U∗(y;y, µ, σ) = R(τ ;µ, σ). The exact cdf of U∗ is derived in the following subsection.
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3.1 Distribution of the generalized pivot

To find the cdf of U∗, we consider two different cases if τ ≤ µ̂0 or τ > µ̂0. Notice that in the case of
τ ≤ µ̂0, the U

∗ defined in (9) is a mixed random variable with probability function

fU∗(x) =

{
fUR

(x), 0 < x < 1,
π, x = 1,

such that

π = P(UR ≥ 1) = P

(
Z1 +

τ − µ̂0

σ̂0
Z2 ≤ 0

)
, (10)

where Z1 and Z2 are as defined in (4). So, by some algebraic calculations, we get π = 1−
(
1− n(τ−µ̂0)

mσ̂0

)1−m

.

Therefore, the cdf of U∗ is given by

FU∗(x) =


0, x ≤ 0,

xn
(
1− n(τ−µ̂0)

mσ̂0

)1−m

≤ 1− π, 0 < x < 1,

1, x ≥ 1.

(11)

It is obvious that in the case of τ > µ̂0, the U
∗ defined in (9) is a continuous random variable; that is,

U∗ = UR. Hence, by performing some algebraic calculations, the cdf of U∗ in this case is given by

FU∗(x) =

 0, x ≤ 0,
ϕ(x; τ, µ̂0, σ̂0), 0 < x < 1,
1, x ≥ 1,

(12)

such that

ϕ(x; τ, µ̂0, σ̂0) =
Γ
(
m− 1,−mσ̂0 log x

τ−µ̂0

)
Γ(m− 1)

+
xn

Γ(m− 1)
ψ

(
−mσ̂0 log x

τ − µ̂0
,

(
1− n

m

τ − µ̂0

σ̂0

)
,m− 1

)
,

where Γ(α) stands for the complete gamma function, Γ(α, t) represents the incomplete gamma function
(i.e.,Γ(α, t) =

∫∞
t
e−yyα−1dy) and

ψ(t, β, α) =

{
tα

α , if β = 0, t > 0, α > 0,
Γ(α)−Γ(α,βt)

βα , if β ̸= 0, t > 0, α > 0.

3.2 Interval estimation for survival function

As previously mentioned, the percentiles of U∗ construct the GCIs for the survival function at τ . Using
(6), for given α, a 100(1−α)% lower GCL for R(τ ;µ, σ) is defined by inf{x : FU∗(x) ≥ α}. To derive the
exact lower GCLs for R(τ ;µ, σ), we consider two cases whether τ ≤ µ̂0 or τ > µ̂0.
Case I) Suppose that τ ≤ µ̂0, then using (11), the α-quantile of U∗ is defined by F−1

U∗ (α) if α < 1 − π
and coincides with 1 otherwise. Hence, a 100(1− α)% lower GCL for R(τ ;µ, σ) is given by

R1(τ ;α) = min

{
1, α1/n

(
1− n(τ − µ̂0)

mσ̂0

)m−1
n

}
. (13)

Case II) Now, suppose that τ > µ̂0, then a 100(1− α)% lower GCL for R(τ ;µ, σ) is given by

R2(τ ;α) = F−1
U∗ (α), (14)

where FU∗(x) is as defined in (12). The lower GCLs for R(τ ;µ, σ) can be obtained by FindRoot command
in Mathematica, using (14).
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To illustrate the performance of the proposed procedure in this paper, we simulate the values of 95% lower
GCLs for survival function at τ for n = 10, m = 5 and some selected choices of the progressive censoring
schemes R = (R1, . . . , Rm). Furthermore, the values of µ and σ have been chosen to be µ = 0.5, 1
and σ = 0.4, 1.1. The results are presented in Table 1. Similar results are tabulated in Table 2 for the
associated coverage probabilities. The lower GCLs and the coverage probabilities are obtained using 5000
times simulations.

Table 1. Values of 95% lower GCLs for R(τ ;µ, σ) for n = 10 and m = 5.

µ = 0.5 µ = 1
τ τ

σ R 1 1.5 2 5 1.5 2 5

0.4 (1,1,1,1,1) 0.1017 0.0181 0.0042 0.0000 0.1030 0.0186 0.0000
(0,0,0,0,5) 0.1015 0.0183 0.0044 0.0000 0.1030 0.0184 0.0000
(0,5,0,0,0) 0.1050 0.0194 0.0047 0.0000 0.1028 0.0187 0.0000
(5,0,0,0,0) 0.1053 0.0193 0.0047 0.0000 0.1031 0.0188 0.0000
(0,0,3,2,0) 0.1037 0.0191 0.0046 0.0000 0.1041 0.0191 0.0000

1.1 (1,1,1,1,1) 0.3940 0.1760 0.0859 0.0031 0.3992 0.1797 0.0052
(0,0,0,0,5) 0.3920 0.1747 0.0851 0.0031 0.3986 0.1790 0.0052
(0,5,0,0,0) 0.3978 0.1789 0.0874 0.0032 0.3954 0.1777 0.0050
(5,0,0,0,0) 0.3940 0.1752 0.0855 0.0031 0.3935 0.1753 0.0048
(0,0,3,2,0) 0.3972 0.1779 0.0867 0.0031 0.3985 0.1783 0.0050

Table 2. Coverage probabilities of the lower GCLs for R(τ ;µ, σ) for n = 10 and m = 5.

µ = 0.5 µ = 1
τ τ

σ R 1 1.5 2 5 1.5 2 5

0.4 (1,1,1,1,1) 95.30 95.48 95.44 95.48 95.04 94.90 94.90
(0,0,0,0,5) 95.00 95.06 95.06 94.90 94.90 95.12 95.04
(0,5,0,0,0) 94.54 94.50 94.58 94.62 95.22 95.36 95.18
(5,0,0,0,0) 94.72 94.58 94.70 94.76 95.36 95.28 95.30
(0,0,3,2,0) 94.56 94.72 94.82 94.78 95.00 95.02 95.12

1.1 (1,1,1,1,1) 95.30 95.39 95.06 94.80 94.96 95.02 94.84
(0,0,0,0,5) 95.62 95.54 95.22 94.96 95.16 94.72 94.54
(0,5,0,0,0) 94.58 94.82 94.78 94.88 95.22 95.32 95.48
(5,0,0,0,0) 95.16 95.20 94.98 95.04 95.08 95.16 95.38
(0,0,3,2,0) 94.98 94.98 95.00 95.10 94.64 94.60 95.12

From Table 2, it is observed that the coverage probabilities of the GCLs are satisfactory.

4 Concluding remarks

The interval estimation of the survival function of the two-parameter exponential distribution on the basis
of the progressively Type-II censored samples was studied in this paper. Toward this end, we obtained
the GCI on the basis of a generalized pivotal quantity for the survival function. One may also derive
a GCI which the associated expected width is minimum. The interval (L,U) is called a 100(1 − α)%
CI with the shortest expected width for unknown parameter θ on the basis of the pivotal quantity Q, if
FQ(U)−FQ(L) = 1−α and E(U−L) is minimum. Since the probability function of U∗ defined in (9), for
the case of τ ≤ µ̂0, is increasing, the 100(1− α)% GCI with the shortest expected width for R(τ ;µ, σ) is
[R1(τ ;α), 1], where, the R1(τ ;α) is as defined in (13). Now, suppose that τ > µ̂0, then using (12), it can
be shown that fU∗(0) = fU∗(1) = 0 and that the probability density function of U∗ defined in (9) has a
unique mode in (0, 1). Therefore, by some algebraic calculations it is deduced that the interval (ζα, ξα) is
a 100(1− α)% GCI with the shortest expected width for R(τ ;µ, σ) on the basis of the generalized pivot
U∗, if

fU∗(ζα) = fU∗(ξα) and FU∗(ξα)− FU∗(ζα) = 1− α.

The exact values of ζα and ξα can be easily obtained using the FindRoot command in Mathematica.
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Abstract

Controlling measured confounders to estimate the average causal effect of an exposure in observa-
tional study is challenging subject. Inverse Probability Treatment Weight (IPTW) estimator method
control the impact of these covariates by allocating weight to each subject. In this work, we use
Monte Carlo simulation to produce different kind of weights and determine which of the impressive
covariates has more effect on the causal path way from exposure to outcome.

Keywords and Phrases: Balanced weights, IPTW, Monte Carlo, Unstablized weights
AMS Subject Classification 2000: primary 62N01.

1 Introduction

Randomized allocation in randomized controlled trials remarks this study as the gold standard method for
estimating treatment effect. Hence there are some instances which this study is impractical or unethical,
the interest of using observational study increased gradually during past decades. Although we could not
guarantee the consistency of causal estimate in this study because of no control in assignment treatment to
subjects which result in systematically different between treated and untreated subjects[1] and presence of
measured confounding [2], but so called IPTW estimation method can reduce the impact of confounder’s
by assigning weights to each subject. These weights could be stablized, unstablized or balanced. In
this papaer we consider different covariates which affect on exposure and outcome. Then by Monte
Carlo study we obtain stablized and balanced weights and determine how the impact of covariates under
different models can be controlled.

2 IPTW Estimator

For controlling the effect of measured confounders, IPTW estimator create a Pseudo population by
assinging wieght to each subject. By each weight we have in fact copies from each subject in puasode
population. For instance if the weight of ith subject be 2 then we have 2 copies from this subject in
pseudo population. Pseudo population has 2 characters[3]:

1) Treatment or exposure in pseudo population is not influence by measured confounders.
2) P [Yi1 = 1] and P [Yi0 = 1] are the same in basic and pseudo populations.
Yi1 and Yi0 are called potential outcomes. Suppose X in a binary exposure (Xi=0: unexposed, Xi=1:

exposed) then Yix represent the potential outcome which a subject would have had if possibly contrary
to fact, the treatment X were set to x.[4]

For IPTW estimator the weights can be obtained as follow:

Wi = 1/P [Xi|Ui]

where X is an exposure and U is measured confounder factors.
These probabilities are unknown and should be estimated. For instance, if the exposure be binary we

can postulate a logistic regression as the form:

Logit(Xi|Ui) = α0 + α1Ui
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where logit(z) = exp(z)
1+exp(z)

These weights are called unstablized. We can use stablized weights instead to obtain more consistent
estimate of the causal effect. Stablized weights are difined as[3]:

SWi = P [Xi]/P [Xi|Ui]

When confounders and exposure be independent then SWi = 1 so each subject’weight is the weight
in basic population, that is why we have more consistent estimator under stablized weights.

For calculating balanced weights, fisrt we regress the exposure on measured confounders to obtain
fitted value of exposure then we obtain balanced weights as follow:

BWi = 1/(XiX
∗
i + (1−Xi)(1−X∗

i ))

where X∗
i is the fitted value of Xi.

3 Monte Carlo Simulation

3.1 definitions

Seven variables considered which varying in their association with the exposure and the outcome. X2,X4,X5,X6

have been generated independently from normal distribution with mean 0 and standard deviation 1. X1,
X3 and X7 have been generated from bernoulli distribution with parameter 0.5 . X1, X2, X5 and X6

are associated with both exposure and outcome. X4 is associated with outcome only and X3 is associ-
ated with exposure only. X7 is associated with neither exposure nor outcome. Based on epidemiologist
standpoint[1], just 4 of these variables are true confounders that is they affect on both exposure and
outcome. Other variables are baseline covariates because they don’t have effect on exposure and outcome
simultaneously, in addition they are measured before starting the study.

we used logit model to generate exposure as follow:

logit(pi,w) = β0 + β1x1 + β2x2 + β3x3 + β4x5 + β5x6

Wi : Ber(1, pi,w)

The outcome is generated from normal distribution with µ = α0 +α1x1 + β2x2 +α3x4 +α4x5 +α5x6
and σ = 1.

By Monte Carlo simulation we determine the ability of different case of IPTW estimators to balance
seven covariates between subjects. We considered 5 models by different choice of variables entering the
model. In first model, we just entered true confounders to obtain stablized and balance wieght. In second
model, we entered X3 which has correlation with exposure. In third model, we use X4 that has effect on
outcome. Fourth model has X7 that does not have effect on exposure and outcome. In the last model
we omitted one of the true confounders. we wish to determine which of the covariates has more effect on
the causal effect of an exposure.

IPTW1: (X1, X2, X5, X6)

IPTW2: (X1, X2, X5, X6, X3)

IPTW3: (X1, X2, X5, X6, X4)

IPTW4: (X1, X2, X5, X6, X7)

IPTW5: (X1, X2, X5)

3.2 Monte Carlo simulation

We randomly generated 500 data sets as described in section 3.1 which each data set has 500 subjects.
Using each of the 500 data sets, we obtain the bias and mean square error (MSE) of the estimated causal
effect for stablized and balanced weights under Monte Carlo and general Simulation.
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3.3 Result

We summarize our findings by considering table 1 and table 2:

First, stablized weights result in better estimate of causal effect than balanced weight in Monte Carlo
simulation whereas it is vice versa in general simulation.

Second, entering X4 to the model which has effect on outcome only reduced bias and MSE in both
study it means by adding X4, we could estimate the causal effect more consistently in comparison with
ignoring this variable. It seeme that entering X3 would not have effect on the causal path way from
exposure to an ouctome.

Third, entering X7 which does not have effect on both exposure and outcome decrease the bias in
Monte Calo study but these factors doesnt change in general simulation. This result is more logical than
Monte Carlo simulation because each covariate which has effect nor exposure neither outcome could not
control the effect of confounders in the causal path way.

Finally, omitting one of true confounders lead to more bias. hence confounders affect on both exposure
and outcome, ignoring their effect deviate the causal effect of an exposure in an outcome.

4 Discussion

The objective of the current study was to determine the impact of different covariates on the causal effect
of an exposure on an outcome under Monte Carlo simulation and general simulation. By considering table
1 and table 2 we figur out that entering different covariates to the analysis have different consequences. In
addition we could not determine which of the weights has more efficieny in IPTW estimator. Depend on
which simululation performed we should choose weights. But an obviouse result is ignoring the impact
of one of the confounders deviate the causal effect. That is why controlling measured confounders is
essential especially in epidemiology. In this study we considered estimation models in which the espocure
is affecting linear on outcome.

Table1. IPTW Estimator with Monte Carlo Simulation
Estimator: Bias MSE

weights: Balanced Stablized Balanced Stablized

IPTW1 0.333 0.108 0.248 0.028
IPTW2 0.302 0.109 0.207 0.028
IPTW3 0.291 0.106 0.182 0.027
IPTW4 0.311 0.108 0.229 0.028
IPTW5 0.341 0.106 0.253 0.027

Table2. IPTW Estimator by General Simulation
Estimator: Bias MSE

weights: Balanced Stablized Balanced Stablized

IPTW1 0.080 0.108 0.019 0.028
IPTW2 0.080 0.108 0.019 0.028
IPTW3 0.076 0.105 0.018 0.027
IPTW4 0.080 0.108 0.019 0.028
IPTW5 0.098 0.106 0.025 0.027
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Abstract

In this paper,we explore properties of the residual Renyi entropy of upper (lower) record variables.
The residual Renyi entropy of the nth record from a continuous distribution function is represented
in terms of the residual Renyi entropy of the nth record from exponential distribution and closed
form of incomplete gamma distribution. We discuss the monotone behavior of the residual Renyi
entropy of record values and provide bounds for residual Renyi entropy of upper (lower) records.

Keywords and Phrases:Upper record values, Lower record values, Residual life time, Renyi
entropy.
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1 Introduction

The notation of entropy is of fundamental importance in different areas such as physics, probability and
statistics, communication theory and economics. Shannon entropy plays an important role in the context
of information theory. Let X be an absolutely continuous random variable which denotes the lifetime
of a device or, a system with probability density function f(x), distribution function F and the survival
function F̄ = 1−F . Then the average amount of uncertainty associated with the random variable X, as
given by the Shannon entropy (1948), is:

H(X) = H(F ) = −
∫ +∞

0

f(x)logf(x)dx.

Hα(X) = − 1

α− 1
log

∫ +∞

0

fα(x)dx, α > 0, α ̸= 1.

Ebrahimi [11] considered the entropy of the residual lifetime as a dynamic measure of uncertainty. The
residual lifetime of the system when it is still operating at time t, is Xt = X − t|X > t which has
probability density function

f(x; t) =
f(x)

F̄ (t)
, x > t > 0, F̄ (t) > 0.

This function can also be used to describe the mean residual life time

H(X; t) = −
∫ +∞

t

f(x; t)logf(x; t)dx, t > 0.

The residual entropy is time-dependent and measures the uncertainty of the residual lifetime of the system
when it is still operating at time t. Several authors have studied properties of H(X; t);see for example,
Ebrahimi and Kirmani [12], Asadi and Ebrahimi [5] and Belzunce et al. [9].
The residual Renyi entropy (RRE) is defined similarly:

Hα(X; t) = − 1

α− 1
log

∫ +∞

t

fα(x)

F̄α(t)
dx. (1)
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Let Xi, i ≥ 1, be a sequence of iid continuous random variables with the cdf F (x) and the pdf f(x).
An observation Xj will be called an upper record value if its value is greater than that of all previous
observations. Thus Xj is an upper record value if Xj > Xi for all i < j. By convention X1 is the
first upper record value. An analogous definition can be given for lower record values. Record values
and associated statistics are of great importance in several real-life problems involving weather, economic
and sports data. The statistical study of record values started with Chandler [10] and has now spread
in different directions. Interested readers may refer to Nagaraja [21] and Arnold et al. [6]. Some work
in this regard has been done for Rayleigh and Weibull distribution by Balakrishnan and Chan [7] and
Sultan and Balakrishnan [20], Habibi et al. [13] compared Kullback Leibler information of records with
the same number of iid observations. Abbasnejad and Arghami [2] did the same tinging terms of Renyi
information. Baratpur et.al. [8] studied some information properties of records based on Shannon entropy
and mutual information.
Several ordering and reliability properties of record values have been studied by Kamps [14], [15], Ah-
madi and Arghami [3], Ahmadi and Balakrishnan [4], Zarezadeh and Asadi [23]. Navarro and Agulia and
Asadi [22]studied some new result on cumulative residual entropy. Kumar and Taneja [17] worked some
characterization result on generalized cumulative result entropy measure. We now provide some results
on the residual Renyi entropy of records. In section 2, first we express the marginal density and survival
function, then present lemma and theorems in order to drive closed forms for RRE of nth record values.
We also show that,RRE of upper (lower) records is non-increasing function of number of record values
in the sequence. In section 3, we obtain bounds for residual Renyi entropy of records, and we also give
figures to show that bounds of RRE of nth record value based on mode of Gamma distribution are closer
to real value RRE than bound presented by Zarezadeh and Asadi.
We bring the following definition in which X and Y denote random variables with distribution functions
F and G, density functions f and g, and survival functions: F̄ (x) = 1− F (x), Ḡ(x) = 1−G(x).
definition 1.1
(a) The random variable Y is said to be smaller than X in the usual stochastic order ( Y <st X )
if Ḡ(x) < F̄ (x) for all x.

(b) The random variable Y is said to be smaller than X in likelihood ratio order ( Y <lr X) if f(x)
g(x)

is an increasing function of x.
It can be shown that if Y <lr X, then Y <st X . See [19]

2 Residual renyi entropy of upper(lower) record values

Let U1, U2, ..., Un be the first n upper record values from a distribution with the cdf F (x) and the pdf
f(x). Then the joint pdf of the first n upper record values and the marginal density of Un (the nth upper
record value , n ≥ 1) is given , respectively, by

q(u) =
n−1∏
i=1

r(ui)f(un), u1 < ... < un

fun(un) =
Rn−1(un)

Γ(n)
f(un), ∞ < un < +∞. (2)

Where R(t) = −log(1− F (t)), and r(t) = R′(t) =
f(t)

1− F (t)
is the hazard function. The survival function

of Un, which is denoted by F̄Un ,is given by

F̄Un(x) =

n−1∑
j=o

[−logF̄ (x)]j

j!
F̄ (x) =

Γ(n;−logF̄ (x))
Γ(n)

. (3)

Where Γ(a;x) is known as the incomplete Gamma function and is defined as

Γ(a;x) =

∫ +∞

x

ua−1e−udu, a, x > 0.
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Where ft(x) =
1

Γ(a; t)
xa−1e−x, x > t > 0. (4)

Let L1, L2, ..., Ln be the first n lower records values from the distribution with the cdf F (x) and the pdf
f(x).Then the joint pdf of the first n lower record values and the marginal density of Ln (the nth lower
record value, n ≥ 1)is given , respectively by:

p(I) =

n−1∏
i=1

r̃(li)f(ln), l1 > ... > ln

fln(ln) =
R̃n−1

(n− 1)!
f(ln), −∞ < Ln < +∞, (5)

Where R̃(t) = −log(F (t)), and r̃(t) = f(t)

F (t)
.

Is the reversed hazard function. Then the survival function of Ln, which is denoted by F̄Ln ,is given by

F̄Ln(x) = 1−
n−1∑
j=o

[−logF (x)]j

j!
F (x) =

Γ∗(n;−logF (x))
Γ∗(n)

. (6)

where Γ∗(a;x) is known as the incomplete Gamma function and is defined as:

Γ∗(a;x) =

∫ x

0

ua−1e−udu, a, x > 0.

In this section we obtain some results on the RRE of record values.
First, we explore the following lemma witch obtain RRE of record values from standard Exponential
distribution in terms of truncated Gamma distribution. It is easily proved from definition of RRE.
Lemma 2.1. Let U∗

ndenote the nth upper record value from a sequence of observations from standard
Exponential distribution. Then

Hα(U
∗
n; t) = − 1

α− 1
log

Γ(α(n− 1) + 1, t)

Γα(n, t)
− 1

α− 1
logE(e−(α−1)Ut) . (7)

where Ut ∼ Γ(α(n− 1) + 1, t).
Theorem 2.1. LetXn, n > 1 be a sequence of iid continuous random variables from the distribution
F (x) with density function f(x) and the quantile function F−1(.). Let Un denote the nth upper record.
Then the Renyi entropy of Un can be expressed as

Hα(Un; t) = − 1

α− 1
log

Γ(α(n− 1) + 1,−logF̄ (t)))
Γα(n,−logF̄ (t))

− 1

α− 1
logE(fα−1(F−1(1− e−Vz )). (8)

Also we can write:

Hα(Un; t) = Hα(U
∗
n,−logF̄ (t)) +

1

α− 1
logE(e−(α−1)Vz )− 1

α− 1
logE(fα−1F−1(1− e−Vz ). (9)

Where z = −logF̄ (t) and Vz ∼ Γ(α(n− 1) + 1,−logF̄ (t)).

Proof.By formula(1), (2), (3), and applying transformation v = R(x) we have

Hα(Un; t) = − 1

α− 1
log
∫ +∞
−logF̄ (t)

vα(n−1)e−v

Γ(n)α
fα−1(F−1(1− e−v))dv +

α

α− 1
logF̄Un(t)

=
α

α− 1
logΓ(n)− 1

α− 1
logΓ(α(n− 1) + 1,−logF̄ (t))

− 1

α− 1
log
∫ +∞
−logF̄ (t)

vα(n−1)e−v

Γ(α(n− 1) + 1,−logF̄ (t))
fα−1(F−1(1− e−v))dv

+
α

α− 1
log

Γ(n,−logF̄ (t))
Γ(n)

= − 1

α− 1
log

Γ(α(n− 1) + 1,−logF̄ (t))
Γ(n,−logF̄ (t))α

− 1

α− 1
logE(fα−1(F−1(1− e−Vz )).□
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Theorem 2.2. Under the assumptions of theorem 2.1, if Ln denotes the nth lower record, then the
Renyi entropy of Ln can be expressed as

Hα(Ln; t) = − 1

α− 1
log

Γ∗(α(n− 1) + 1;−logF (t))
Γ∗α(n,−logF (t))

− 1

α− 1
logE(fα−1(F−1(e−Vz )). (10)

Where Vz ∼ Γ∗(α(n− 1) + 1,−logF (t)).
Proof. By using (1),(3),(5), Where v = R̃(t) = −log(F (t)) , it can be proved in a similar manner of
theorem 2.1. □

Lemma 2.2.(Shaked, M., 2007) The expectations X ⩽st Y exist if and only if E[φ(X)] < E[φ(Y )]
holds for all increasing functions φ for which the expectations exist.
Theorem 2.3. Let Xi, i > 1 be a sequence of i.i.d random variables from distribution function F having
an increasing density functionf . If Un, n > 1 represents the sequence of upper record values correspond-
ing to F , then Hα(Un; t) is decreasing in n.
Proof. Upon using closed form of Hα(Un; t) we can write:

Hα(Un; t) = δ(n, t)− 1

α− 1
logE(fα−1(F−1(1− e−Vn)),

Where δ(n, t) = − 1

α− 1
log(Γ(α(n− 1) + 1,−logF̄ (t)))− α

α− 1
Γ(n,−logF̄ (t)).

H(α)(Un+1; t)−Hα(Un; t) = δ(n+ 1, t)− δ(n, t)− 1

α− 1
log(

E(fα−1(F−1(1− e−Vn+1)))

E(fα−1(F−1(1− e−Vn)))
).

Where Vn ∼ Γ∗(α(n− 1) + 1,−logF (t)).
For α > 1 it is enough to show that:
dδ(n, t)

dn
=

α

α− 1
(ψ(n,−logF̄ (t))− ψ(α(n− 1) + 1,−logF̄ (t)))

Where ψ(x) =
dlogΓ(x)

dx
is an increasing digamma function, for all x, δ(n, t) is a decreasing function of n.

And we obtain Vn ⩽lr Vn+1 therefore Vn ⩽st Vn+1. By lemma 2.2 :
E[fα−1(F−1(1− e−vn))] > E[fα−1(F−1(1− e−vn+1))].
Thus Hα(Un+1; t)−Hα(Un; t) < 0, and result for 0 < α < 1 readily follow.□

Theorem 2.4. Let Xi, i > 1 be a sequence of i.i.d random variables from distribution function F having
an decreasing density function f . If Ln, n > 1 represents the sequence of lower record values correspond-
ing to F , then Hα(Ln; t) is decreasing in n.
Proof. Using argument similar to those in the proof of theorem 2.3 we can prove it. □

3 Bounds for Residual Renyi entropy of upper(lower)record val-
ues

Zarezadeh and Asadi (2010) obtained bound for residual Renyi entropy of upper record values. In this
section, we introduce bounds for RRE of nth record a s different distribution in terms of mode of Gamma
distribution and mode of the parent distribution.

Theorem 3.1. For any random variable X with Renyi entropy Hα(X; t) < ∞ the Renyi entropy of
upper record Un, n = 1, 2, ..., is bounded as follows:
for α > 1(0 < α < 1);

Hα(Un; t) > (<) +
α

α− 1
logΓ(n,−logF̄ (t))− 1

α− 1
(α(n− 1)log(mn)−mn) + S(t) (11)

where S(t) = − 1

α− 1
log
∫∞
t
r(y)fα−1(y)dy, r(y) =

f(y)

F̄ (y)
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Proof. Let Hα(Un; t) <∞ , if mn = max{α(n− 1),−logF̄ (t)}
where mn is the mode of Gamma distribution with density:

Mn = f(mn) =
m

α(n−1)
n e−mn

Γ(α(n− 1) + 1,−logF̄ (t))
.

Now, we write ,for α > 1(0 < α < 1)

− 1

α− 1
logE(f−1(F−1(1− e−V ))

= − 1

α− 1
log
∫∞
−logF̄ (t)

vα(n−1)e−v

Γ(α(n− 1) + 1,−logF̄ (t)
(fα−1(F−1(1− e−v))dv,

> − 1

α− 1
logf(mn)−

1

α− 1
log
∫ +∞
−logF̄ (t)

(fα−1(F−1(1− e−v))dv,

= − 1

α− 1
logMn +

−1

α− 1
log
∫ +∞
t

r(y)fα−1(y)dy.□

By transformation y = F−1(1− e−v) and r(y) =
f(y)

F̄ (y)
above result obtain. Therefore

Hα(Un; t) < +
α

α− 1
logΓ(n,−logF̄ (t))− 1

α− 1
(α(n− 1)logmn −mn) + S(t).

Thus the proof is now complete. □

Theorem 3.2. For any random variableX with Renyi entropy Hα(X; t) < ∞ the Renyi entropy of
lower record Ln, n = 1, 2, ..., is bounded as follows:
For α > 1(0 < α < 1);

Hα(Ln; t) > (<) +
α

α− 1
logΓ(n,−logF (t))− 1

α− 1
(α(n− 1)log(mn)−mn) + S∗(t). (12)

where S∗(t) = − 1

α− 1
log
∫∞
t
r(y)fα−1(y)dy, r(y) =

f(y)

F (y)
Proof. The similar argument proof of theorem 3.1 using for prove it.□

Zarezadeh and Asadi (2010) proposed using of the following bound for RRE of upper record values.

Hα(Un; t) > − 1

α− 1
log

Γ(α(n− 1) + 1,−logF̄ (t))
Γα(n,−logF̄ (t))

− logM (13)

We obtain bound for RRE of lower record values the based on mode of the parent distribution.

Theorem 3.3. Under the assumptions of Theorem 3.2, for α > 0;

Hα(Ln; t) > − 1

α− 1
log

Γ∗(α(n− 1) + 1,−logF (t))
Γ∗α(n,−logF (t))

− logM, (14)

where M = fX(m) <∞, and m = sup{X : f(x) < M} is the mode of the distribution.
Proof. The proof is easy. Since fX(x) < fX(m) , it is enough to show for α > 1(0 < α < 1) :
fα−1F−1(1− e−v) < (>)Mα−1,

We have:
−1

α− 1
logE[fα−1F−1(1− e−v)] > −logM .

Thus the result follows.□

Example 3.2. Let X have Generalized exponential distribution with density

f(x) =
β

θ
exp(

µ− x

θ
)(1− exp(

µ− x

θ
))β−1, x < µ < 0 θ, β > 0,
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since the mode of distribution is m = µ+ θlnβ we have :

M = f(m) =
1

θ
(
β − 1

β
)β−1,

therefore,

Hα(Ln; t) > − 1

α− 1
log

Γ∗(α(n− 1) + 1,−logF (t))
Γ∗α(n,−logF (t))

+ logθ − (β − 1)log(1− 1

β
).

Remark 3.1. The following figures show that the bound of RRE of nth upper record value based
on mode of Gamma distribution in (11), is more exact than the bound of presented by Zarezadeh and
Asadi in 15. Figures display plot of the RRE of Un (black line) and bounds in 11 (violet line), in 15 (
blue line) for Gamma distribution and Weibull distribution.
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Figure 1: The plot of the bounds of RRE U3 for Weibull distribution based onα = 2, β = 2, λ = 1
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Figure 2: The plot of the bounds of RRE U3 for Gamma distribution based onα = 2, β = 2, θ = 2
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4 conclusion

In this paper, we explored properties of the residual Renyi entropy (RRE) of upper (lower) record values.
The RRE of the nth record from a continuous distribution function is represented in terms of the residual
Renyi entropy of the nth record from exponential distribution and closed form of truncated Gamma
distribution. We introduced bounds for RRE of nth record as different distribution in terms of mode of
the Gamma distribution and mode of the parent distribution. We showed that bounds of RRE of nth
record value based on mode of Gamma distribution are closer to real value RRE than bounds presented
on mode of parent distribution.
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